JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ESSENTIAL NORMS AND STABILITY CONSTANTS OF WEIGHTED COMPOSITION OPERATORS ON C(X)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ESSENTIAL NORMS AND STABILITY CONSTANTS OF WEIGHTED COMPOSITION OPERATORS ON C(X)
Takagi, Hiroyuki; Miura, Takeshi; Takahasi, Sin-Ei;
  PDF(new window)
 Abstract
For a weighted composition operator on C(X), we determine its essential norm and the constant for its Hyers-Ulam stability, in terms of the set $\varphi(\{x\;\in\;X\;:\;u(x)\;\geq\;r\})$ (r > 0).
 Keywords
weighted composition operator;essential norm;Hyers-Ulam stability;closed range;
 Language
English
 Cited by
1.
On the best constant in Hyers–Ulam stability of some positive linear operators, Journal of Mathematical Analysis and Applications, 2014, 412, 1, 103  crossref(new windwow)
2.
Best constant in stability of some positive linear operators, Aequationes mathematicae, 2016, 90, 4, 719  crossref(new windwow)
3.
Hyers–Ulam stability with respect to gauges, Journal of Mathematical Analysis and Applications, 2017, 453, 1, 620  crossref(new windwow)
4.
Stability of some positive linear operators on compact disk, Acta Mathematica Scientia, 2015, 35, 6, 1492  crossref(new windwow)
5.
Hyers–Ulam stability of linear functional differential equations, Journal of Mathematical Analysis and Applications, 2015, 426, 2, 1192  crossref(new windwow)
6.
Essential norm of substitution vector-valued integral operator on L1(Σ) space, Journal of Mathematical Analysis and Applications, 2017, 448, 2, 1413  crossref(new windwow)
7.
The Fréchet functional equation with application to the stability of certain operators, Journal of Approximation Theory, 2012, 164, 1, 138  crossref(new windwow)
8.
Hyers–Ulam Stability of Differential Operators on Reproducing Kernel Function Spaces, Complex Analysis and Operator Theory, 2016, 10, 4, 795  crossref(new windwow)
9.
On the stability of some positive linear operators from approximation theory, Bulletin of Mathematical Sciences, 2015, 5, 2, 147  crossref(new windwow)
10.
Hyers-Ulam Stability of Differentiation Operator on Hilbert Spaces of Entire Functions, Journal of Function Spaces, 2014, 2014, 1  crossref(new windwow)
11.
On the stability of some classical operators from approximation theory, Expositiones Mathematicae, 2013, 31, 3, 205  crossref(new windwow)
12.
Composition Operators on Cesàro Function Spaces, Journal of Function Spaces, 2014, 2014, 1  crossref(new windwow)
13.
Hyers-Ulam stability of delay differential equations of first order, Mathematische Nachrichten, 2016, 289, 1, 60  crossref(new windwow)
 References
1.
Linear Operators Part Ⅰ, 1988.

2.
Proc. Amer. Math. Soc., 1990. vol.108. pp.95-99 crossref(new window)

3.
Proc. Nat. Acad. Sci. U.S.A., 1941. vol.27. pp.222-224 crossref(new window)

4.
J. Operator Theory, 1988. vol.19. pp.307-317

5.
Proc. Amer. Math. Soc., 1981. vol.83. pp.517-521

6.
Tokyo J. Math., 2001. vol.24. pp.467-476 crossref(new window)

7.
Math. Nachr., 2003. vol.258. pp.90-96 crossref(new window)

8.
Ann. of Math., 1987. vol.125. 2;2, pp.375-404 crossref(new window)

9.
Composition operators on function spaces, 1993.

10.
Proc. Amer. Math. Soc., 1987. vol.99. pp.667-670 crossref(new window)

11.
Tokyo J. Math., 1988. vol.11. pp.119-129 crossref(new window)

12.
Bull. Korean Math. Soc., 2002. vol.39. 2, pp.309-315 crossref(new window)

13.
Introduction to functional analysis(2nd ed.), 1980.

14.
Problems in modern mathematics, 1964.