JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INVERSE SHADOWING FOR EXPANSIVE FLOWS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INVERSE SHADOWING FOR EXPANSIVE FLOWS
Lee, Keon-Hee; Lee, Zoon-Hee;
  PDF(new window)
 Abstract
We extend the notion of inverse shadowing defined for diffeomorphisms to flows, and show that an expansive flow on a compact manifold with the shadowing property has the inverse shadowing property with respect to the classes of continuous methods. As a corollary we obtain that a hyperbolic flow also has the inverse shadowing property with respect to the classes of continuous methods.
 Keywords
flow;expansive;method;shadowing;inverse shadowing;
 Language
English
 Cited by
1.
STRUCTURAL STABILITY OF VECTOR FIELDS WITH ORBITAL INVERSE SHADOWING,;;;

대한수학회지, 2008. vol.45. 6, pp.1505-1521 crossref(new window)
1.
Lipschitz inverse shadowing for non-singular flows, Dynamical Systems, 2014, 29, 1, 40  crossref(new windwow)
2.
Inverse shadowing for structurally stable flows, Dynamical Systems, 2004, 19, 4, 371  crossref(new windwow)
 References
1.
J. Differential Equations, 1972. vol.12. pp.180-193 crossref(new window)

2.
J. Math. Anal. Appl., 1995. vol.189. pp.409-423 crossref(new window)

3.
International J. of Bifurcation and Chaos, 2002. vol.12. pp.1779-1788 crossref(new window)

4.
Ann. Polon Math., 1997. vol.65. pp.171-177

5.
Functional Differential Equations, 1999. vol.6. pp.137-153

6.
Bull. Austral. Math. Soc., 2003. vol.67. pp.15-26 crossref(new window)

7.
Ann. Pol. Math., 1991. vol.53.3. pp.237-252

8.
J. Differential Equations, 1997. vol.140. pp.238-265 crossref(new window)

9.
Lecture Notes in Math., 1999. vol.1706.

10.
Discrete and Continuous Dynamical Systems, 2002. vol.8. pp.29-38 crossref(new window)

11.
Proc. London Math. Soc., 1982. vol.45. pp.479-505 crossref(new window)

12.
J. Differential Equations, 1991. vol.90. pp.316-343 crossref(new window)