JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CRITICAL POINTS AND WARPED PRODUCT METRICS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CRITICAL POINTS AND WARPED PRODUCT METRICS
Hwang, Seung-Su; Chang, Jeong-Wook;
  PDF(new window)
 Abstract
It has been conjectured that, on a compact orient able manifold M, a critical point of the total scalar curvature functional restricted the space of unit volume metrics of constant scalar curvature is Einstein. In this paper we show that if a manifold is a 3-dimensional warped product, then (M, g) cannot be a critical point unless it is isometric to the standard sphere.
 Keywords
total scalar curvature functional;critical point equation;Einstein metric;
 Language
English
 Cited by
1.
CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE,;;;

대한수학회보, 2012. vol.49. 3, pp.655-667 crossref(new window)
1.
A note on static spaces and related problems, Journal of Geometry and Physics, 2013, 74, 18  crossref(new windwow)
2.
CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE, Bulletin of the Korean Mathematical Society, 2012, 49, 3, 655  crossref(new windwow)
 References
1.
Einstein manifolds, 1987.

2.
Bull. Amer. Math. Soc., 1974. vol.80. pp.479-484 crossref(new window)

3.
Manuscripta Math., 2000. vol.103. 2, pp.135-142 crossref(new window)

4.
Proc. Amer. Math. Soc., 2003. vol.131. 10, pp.3221-3230 crossref(new window)

5.
Math. Ann., 2003. vol.259. 3, pp.313-319 crossref(new window)

6.
J. Math. Pures Appl., 1983. vol.62. pp.63-72

7.
J. Math. Soc. Japan, 1962. vol.14. pp.333-340 crossref(new window)