JOURNAL BROWSE
Search
Advanced SearchSearch Tips
QUANTUM DYNAMICAL SEMIGROUP AND ITS ASYMPTOTIC BEHAVIORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
QUANTUM DYNAMICAL SEMIGROUP AND ITS ASYMPTOTIC BEHAVIORS
Choi, Veni;
  PDF(new window)
 Abstract
In this study we consider quantum dynamical semi-group with a normal faithful invariant state. A quantum dynamical semigroup is a class of linear normal identity-preserving mappings on a von Neumann algebra M with semigroup property and some positivity condition. We investigate the asymptotic behaviors of the semigroup such as ergodicity or mixing properties in terms of their eigenvalues under the assumption that the semigroup satisfies positivity. This extends the result of [13] which is obtained under the assumption that the semi group satisfy 2-positivity.
 Keywords
quantum dynamical semigroup;positivity;Schwarz inequality;Jordan product;ergodicity;weak mixing;
 Language
English
 Cited by
1.
A Survey on Invariance and Ergodicity of Quantum Markov Semigroups, Stochastic Analysis and Applications, 2014, 32, 3, 480  crossref(new windwow)
2.
Recurrence and Transience of Quantum Markov Semigroups, Stochastic Analysis and Applications, 2015, 33, 1, 123  crossref(new windwow)
 References
1.
Operator algebras and quantum statistical mechanics I., 1979.

2.
One-parameter semigroups, 1980.

3.
Comm. Math. Phys., 1977. vol.54. 3, pp.293-297 crossref(new window)

4.
Math Z., 1982. vol.180. 2, pp.275-286 crossref(new window)

5.
Lecture Notes in Math., 1986. vol.1184. pp.369-425 crossref(new window)

6.
Math. Proc. Cambridge Philos. Soc., 1992. vol.111. 1, pp.181-192 crossref(new window)

7.
J. Math. Anal. Appl., 1998. vol.221. 1, pp.13-32 crossref(new window)

8.
Math. Z., 2000. vol.235. 3, pp.615-626 crossref(new window)

9.
Harmonic analysis of operators on hilbert space, 1970.

10.
Comm. Math. Phys., 1982. vol.85. 1, pp.129-142 crossref(new window)

11.
Theory of operator algebras I., 1979.

12.
Studia Math., 1985. vol.81. 3, pp.285-291

13.
J. Math. Anal. Appl., 1982. vol.86. 2, pp.411-424 crossref(new window)