JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ON A BANACH ALGEBRA
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ON A BANACH ALGEBRA
Chang, Seung-Jun; Choi, Jae-Gil;
  PDF(new window)
 Abstract
In [10], Chang and Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we define the conditional generalized Fourier-Feynman transform and conditional generalized convolution product on function space. We then establish some relationships between the conditional generalized Fourier-Feynman transform and conditional generalized convolution product for functionals on function space that belonging to a Banach algebra.
 Keywords
generalized Brownian motion process;generalized analytic Feynman integral;conditional generalized analytic Fourier-Feynman transform;conditional generalized convolution product;
 Language
English
 Cited by
1.
CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM OF FUNCTIONALS IN A FRESNEL TYPE CLASS,;

대한수학회논문집, 2011. vol.26. 2, pp.273-289 crossref(new window)
1.
Some relationships for the double modified generalized analytic function space Fourier-Feynman transform and its applications, Mathematische Nachrichten, 2017, 290, 4, 520  crossref(new windwow)
2.
CONDITIONAL GENERALIZED FOURIER-FEYNMAN TRANSFORM OF FUNCTIONALS IN A FRESNEL TYPE CLASS, Communications of the Korean Mathematical Society, 2011, 26, 2, 273  crossref(new windwow)
3.
A new aspect of the analytic Fourier-Feynman transform and its applications, Integral Transforms and Special Functions, 2015, 26, 1, 65  crossref(new windwow)
 References
1.
thesis, University of Minnesota, 1972.

2.
Michigan Math. J., 1976. vol.23. pp.1-30 crossref(new window)

3.
Lecture Notes in Math., 1980. vol.798. pp.18-67 crossref(new window)

4.
Bull. Korean Math. Soc, 1984. vol.21. pp.99-106

5.
J. Korean Math. Soc., 2001. vol.38. 2, pp.485-501

6.
Rocky Mountain J. of Math., 1996. vol.26. 1, pp.37-62 crossref(new window)

7.
submitted for publication, 0000.

8.
Trans. Amer. Math. Soc., 0000. vol.355. 7, pp.2925-2948 crossref(new window)

9.
Bull. Austral. Math. Soc., 2002. vol.65. pp.353-369 crossref(new window)

10.
Integral Transforms andSpecial Functions, 2003. vol.14. 5, pp.375-393 crossref(new window)

11.
Pacific J. Math., 1987. vol.130. pp.27-40 crossref(new window)

12.
J. Korean Math. Soc., 1988. vol.25. 1, pp.37-52

13.
SIAM J. Math. Anal., 1989. vol.20. 4, pp.950-965 crossref(new window)

14.
Michigan Math. J., 1993. vol.40. pp.377-391 crossref(new window)

15.
Trans. Amer. Math. Soc., 1995. vol.347. pp.661-673 crossref(new window)

16.
Rocky Mountain J. Math., 1997. vol.27. pp.827-841 crossref(new window)

17.
Michigan Math J., 1996. vol.43. pp.247-261 crossref(new window)

18.
Oxford Mathematical Monographs, 2000.

19.
Michigan Math. J., 1979. vol.26. 1, pp.103-127 crossref(new window)

20.
Pacific J. Math, 1979. vol.83. 1, pp.157-176 crossref(new window)

21.
Journal of Integral Equations and Applications, 1991. vol.3. 3, pp.411-427 crossref(new window)

22.
J. Korean Math. Soc., 2001. vol.38. 1, pp.61-76

23.
Stochastic Processes and the Wiener Integral, 1973.