JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RADICALS OF A LEFT-SYMMETRIC ALGEBRA ON A NILPOTENT LIE GROUP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RADICALS OF A LEFT-SYMMETRIC ALGEBRA ON A NILPOTENT LIE GROUP
Chang, Kyeong-Soo; Kim, Hyuk; Lee, Hyun-Koo;
  PDF(new window)
 Abstract
The purpose of this paper is to compare the radicals of a left symmetric algebra considered in 〔1〕 when the associated Lie algebra is nilpotent. In this case, we show that all the radicals considered there are equal. We also consider some other radicals and show they are also equal.
 Keywords
left-symmetric algebra;affine structure;radical;nilpotent Lie group;
 Language
English
 Cited by
1.
Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Central European Journal of Mathematics, 2006, 4, 3, 323  crossref(new windwow)
 References
1.
Comm. Algebra, 1999. vol.27. 7, pp.3161-3175 crossref(new window)

2.
Mutations of alternative algebras, 1994.

3.
Trans. Amer. Math. Soc., 1986. vol.295. 1, pp.175-198 crossref(new window)

4.
Ann. Inst. Fourier(Grenoble), 1979. vol.29. 4, pp.17-35

5.
J. Differential Geom., 1986. vol.24. 3, pp.373-394

6.
J. Korean math. Soc., 1996. vol.33. 4, pp.1047-1067

7.
Tensor, N. S., 1982. vol.36. 3, pp.300-302

8.
Tensor, N. S., 1984. vol.41. 1, pp.59-68

9.
Tensor, N. S., 1987. vol.44. 1, pp.108-111

10.
Tensor, N. S., 1987. vol.44. 2, pp.195-203

11.
Proc. Amer. Math. Soc., 1975. vol.47. pp.223-228 crossref(new window)

12.
Introduction to Lie groups and Lie algebras, 1973.

13.
An Introduction to nonassociative algebras, 1966.

14.
Math. Ann., 1992. vol.293. 3, pp.569-578 crossref(new window)