JOURNAL BROWSE
Search
Advanced SearchSearch Tips
UNIQUENESS OF POSITIVE STEADY STATES FOR WEAK COMPETITION MODELS WITH SELF-CROSS DIFFUSIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
UNIQUENESS OF POSITIVE STEADY STATES FOR WEAK COMPETITION MODELS WITH SELF-CROSS DIFFUSIONS
Ko, Won-Lyul; Ahn, In-Kyung;
  PDF(new window)
 Abstract
In this paper, we investigate the uniqueness of positive solutions to weak competition models with self-cross diffusion rates under homogeneous Dirichlet boundary conditions. The methods employed are upper-lower solution technique and the variational characterization of eigenvalues.
 Keywords
uniqueness of positive steady states;upper-lower solutions;weak competition model;self-cross diffusions;
 Language
English
 Cited by
 References
1.
Proc. Roy. Soc. Edinburgh Sect., 1984. vol.A97. pp.21-34

2.
Houston J. Math., 1987. vol.13. 3, pp.337-352

3.
Houston J. Math., 1989. vol.15. 3, pp.341-361

4.
SIAM J. Appl. Math., 1984. 6, pp.1112-1132

5.
Trans. Amer. Math. Soc., 1991. vol.326. 2, pp.829-859 crossref(new window)

6.
Bull. Austral. Math. Soc., 1991. vol.44. 1, pp.79-94 crossref(new window)

7.
Appl. Anal., 1991. vol.40. 4, pp.281-295 crossref(new window)

8.
J. Differential Equations, 1996. vol.131. 1, pp.79-131 crossref(new window)

9.
Appl. Anal., 1987. vol.26. 2, pp.145-160 crossref(new window)

10.
P. J. McKenna and W. Walter, On the Dirichlet problem for elliptic systems, Appl. Anal. 21 (1986), no. 3, 207-224. crossref(new window)

11.
K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contino Dyn. Syst. 9 (2003), no. 4, 1049-1061. crossref(new window)