JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POSTNIKOV SECTIONS AND GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POSTNIKOV SECTIONS AND GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES
Lee, Kee-Young;
  PDF(new window)
 Abstract
In this paper, we apply the concept of the group \ulcorner(X,A) of self pair homotopy equivalences of a CW-pair (X, A) to the Postnikov system. By using a short exact sequence related to the group of self pair homotopy equivalences, we obtain the following result: for any Postnikov section Xn/ of a CW-complex X, the group \ulcorner(Xn/, A) of self pair homotopy equivalences on the pair (Xn/, X) is isomorphic to the group \ulcorner(X) of self homotopy equivalences on X. As a corollary, we have, \ulcorner(K(, n), M(, n)) ≡ \ulcorner(M(, n)) for each n1, where K(,n) is an Eilenberg-Mclane space and M(,n) is a Moore space.
 Keywords
self homotopy equivalence;self pair homotopy equivalence;Postnikov section;
 Language
English
 Cited by
 References
1.
M. Arkowitz, The group of self-homotopy equivalences- a survey, Lecture Notes in Math. 1425 (Springer, New York, 1990), 170–203

2.
M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equivalences, Contemp. Math. 181 (1995), 1–25

3.
B. Gray, Homotopy theory, Academic press, Inc., New York, 1975

4.
P. Hilton, Homotopy theory and Duality, Gordon and Beach, New York, 1965

5.
K. Y. Lee, The group of self pair homotopy equivalences, Preprint

6.
K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989) 293–301

7.
J. Rutter, The group of self equivalence classes of CW-complexes, Math. Proc. Cambridge Philos. Soc. 93 (1983), 275–293

8.
N. Sawashita, On the group of self-equivalences of the product spheres, Hiroshima Math. J. 5 (1975), 69–86

9.
A. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789–802

10.
E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966