JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POLYNOMIAL GROWTH HARMONIC MAPS ON COMPLETE RIEMANNIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POLYNOMIAL GROWTH HARMONIC MAPS ON COMPLETE RIEMANNIAN MANIFOLDS
Lee, Yong-Hah;
  PDF(new window)
 Abstract
In this paper, we give a sharp estimate on the cardinality of the set generating the convex hull containing the image of harmonic maps with polynomial growth rate on a certain class of manifolds into a Cartan-Hadamard manifold with sectional curvature bounded by two negative constants. We also describe the asymptotic behavior of harmonic maps on a complete Riemannian manifold into a regular ball in terms of massive subsets, in the case when the space of bounded harmonic functions on the manifold is finite dimensional.
 Keywords
polynomial growth harmonic map;convex hull;
 Language
English
 Cited by
 References
1.
P. Aviles, H. I. Choi and M. Micallef, Boundary behavior of harmonic maps on non-smooth domains and complete negatively curved manifolds, J. Funct. Anal. 99 (1991), 293–331

2.
J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15–53

3.
S. Y. Cheng, The Liouville theorem for harmonic maps, Proc. Sympos. Pure Math. 36 (1980), 147–151

4.
S. Y. Cheng, L. F. Tam and T. Y. H. Wan, Harmonic maps with finite total energy, Proc. Amer. Math. Soc. 124 (1996), 275–284

5.
T. Colding and W. Minicozzi II, On function theory on spaces with a lower Ricci curvature bound, Math. Res. Lett. 3 (1996), 241–246

6.
T. Colding, Harmonic functions with polynomial growth, J. Differential Geom. 46 (1997), 1–77

7.
T. Colding, Large scale behavior of kernels of Schr'odinger operators, Amer. J. Math. 117 (1997), 1355–398

8.
T. Colding, Generalized Liouville properties for manifolds, Math. Res. Lett. 3 (1996), 723–729

9.
T. Colding, Harmonic functions on manifolds, Ann. of Math. 146 (1997), 725–747

10.
T. Colding, Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math. 51 no. 2 (1998), 113–138

11.
T. Colding, Weyl type bounds for harmonic functions, Invent. math. 131 (1998), 257–298

12.
Th. Coulhon and L. Saloff-Coste, $Vari{\'{e}}t{\'{e}}s$ riemanniennes $isom{\'{e}}triques$ ${\'{a}}$ l'infini, Rev. Mat. Iberoamericana 11 (1995), 687–726

13.
M. Giaquinta and S. Hildebrandt, A priori estimates for harmonic mappings, J. Reine Angew. Math. 336 (1982), 124–164

14.
W. B. Gordon, Convex functions and harmonic maps, Proc. Amer. Math. Soc. 33 (1972), 433–437

15.
A. Grigor'yan, Dimension of space of harmonic functions, Mat. Zametki 48 (1990), 55–61: English transl. in Math. Notes 48 (1990), 1114–1118

16.
A. Grigor'yan, The heat equation on noncompact Riemannian manifolds, Mat. Sb. 182 (1991), no.1, 55–87: English transl. in Math. USSR-Sb. 72 (1992), no. 1, 47–77

17.
S. Hildebrandt, H. Kaul and K. Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), 1–16

18.
W. Jager and H. Kaul, Uniqueness and stability of harmonic maps and their Jacobi fields, Manuscripta Math. 28 (1979), 269–291

19.
M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact riemannian manifolds, J. Math. Soc. Japan 37 (1985), no.3, 391– 413

20.
W. S. Kendall, Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence, Proc. London Math. Soc. 61 (1990), 371–406

21.
S. W. Kim and Y. H. Lee, Generalized Liouville property for Schr¨odinger operator on Riemannian manifolds, Math. Z. 238 (2001), 355–387

22.
S. W. Kim and Y. H. Lee, Asymptotic Dirichlet problem for harmonic maps via rough isometry, Forum Math. 12 (2000), 37–49

23.
Y. H. Lee, Polynomial growth harmonic functions on complete Riemannian manifolds, Rev. Mat. Iberoamericana (to appear)

24.
P. Li, Polynomial growth harmonic sections, Math. Res. Lett. 4 (1997), 35–44

25.
P. Li and L. F. Tam, Green’s functions, harmonic functions, and volume comparison, J. Differential Geom. 41 (1995), 277–318

26.
P. Li and J. Wang, Convex hull properties of harmonic maps, J. Differential Geom. 48 (1998), 497–530

27.
Z-D. Liu, Ball covering property and nonnegative Ricci curvature outside a compact set, Proc. Symp. Pure Math. 54 (1993), 459–464

28.
L. Saloff-Coste, A note on $Poincar{\'{e}}$, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27–38

29.
L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer-Verlag, Berlin, Heidelberg, New York, 1970

30.
C. J. Sung, L. F. Tam and J. Wang, Bounded harmonic maps on a class of manifolds, Proc. Amer. Math. Soc. 124 (1996), 2241–2248

31.
L. F. Tam, A note on harmonic forms on complete manifolds, Proc. Amer. Math. Soc. 128 (1998), 3097–3108

32.
S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228