JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DENSENESS OF TEST FUNCTIONS IN THE SPACE OF EXTENDED FOURIER HYPERFUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DENSENESS OF TEST FUNCTIONS IN THE SPACE OF EXTENDED FOURIER HYPERFUNCTIONS
Kim, Kwang-Whoi;
  PDF(new window)
 Abstract
We research properties of analytic functions which are exponentially decreasing or increasing. Also we show that the space of test functions is dense in the space of extended Fourier hyper-functions, and that the Fourier transform of the space of extended Fourier hyperfunctions into itself is an isomorphism and Parseval`s inequality holds.
 Keywords
strong conjugate space;projective(inductive) limit;extended Fourier hyperfunction;convolution;Fourier(-Laplace) transform;Parseval`s inequality;
 Language
English
 Cited by
1.
THE SPACE OF FOURIER HYPERFUNCTIONS AS AN INDUCTIVE LIMIT OF HILBERT SPACES,;

대한수학회논문집, 2004. vol.19. 4, pp.661-681 crossref(new window)
1.
New spaces of functions and hyperfunctions for Hankel transforms and convolutions, Monatshefte für Mathematik, 2008, 153, 2, 89  crossref(new windwow)
2.
THE SPACE OF FOURIER HYPERFUNCTIONS AS AN INDUCTIVE LIMIT OF HILBERT SPACES, Communications of the Korean Mathematical Society, 2004, 19, 4, 661  crossref(new windwow)
 References
1.
S. -Y. Chung, D. Kim and S. K. Kim, Structure of the extended Fourier hyper-functions, Jap. J. Math. 19 (1993), no. 2, 217–226

2.
I. M. Gel'fand and G. E. Shilov, Generalized functions Vol. 2, Acad. Press New York and London, 1968

3.
S. G. Gindikin, L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., 1992

4.
L. Hormander, Linear Partial Differential Operators, Springer-Verlag Berlin New York, 1969

5.
A. Kaneko, Introduction to hyperfunctions, KTK Sci. Publ./Tokyo, 1992

6.
H. Komatsu, Introduction to the theory of generalized functions, Iwanami Sheoten, Tokyo, 1978. (Jananeses)

7.
K. W. Kim, S. -Y. Chung and D. Kim, Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, Publ. Res. Inst. Math. Sci. 29 (1993), no. 2, 289–300

8.
S. G. Krantz, H. R. Parks, A Primer of real analytic functions, Birkhauser Verlag, 1992

9.
E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1975

10.
M. E. Taylor, Pseudodifferential operators, Princeton Univ. Press, 1981

11.
F. Treves, Topological vector spaces, distributions and kernels, Acad. Press New York and London, 1967

12.
K. Yosida, Functional analysis, Springer-Verlag Berlin New York, 1980