JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPACES OF CONJUGATION-EQUIVARIANT FULL HOLOMORPHIC MAPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPACES OF CONJUGATION-EQUIVARIANT FULL HOLOMORPHIC MAPS
KAMIYAMA, YASUHIKO;
  PDF(new window)
 Abstract
Let () denote the space of basepoint-preserving conjugation-equivariant holomorphic maps of degree k from to . A map f ; is said to be full if its image does not lie in any proper projective subspace of . Let denote the subspace of consisting offull maps. In this paper we determine for all primes p.㜊谀Ѐ㌸㠻⤀䍯浭敲捥Ⱐ捯浭畮楣慴楯湳…⁴牡湳灯牴慴楯渀
 Keywords
rational function;full map;
 Language
English
 Cited by
 References
1.
R. I. Brockett, Some geometric questions in the theory of linear systems, IEEE Trans. Automat. Control 21 (1976), 449-455 crossref(new window)

2.
F. R. Cohen, R. L. Cohen, B. M. Mann, and R. J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 163-221 crossref(new window)

3.
T. A. Crawford, Full holomorphic maps from the Riemann sphere to complex projective spaces, J. Differential Geom. 38 (1993), 161-189

4.
Y. Kamiyama, Relationship between polynomials with multiple roots and rational functions with common roots, Math. Scand., to appear

5.
Y. Kamiyama, Remarks on spaces of real rational functions, Rocky Mountain J. Math., to appear

6.
J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Stud. 76 (1974)

7.
G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72 crossref(new window)