JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EVERY DEFINABLE Cr MANIFOLD IS AFFINE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EVERY DEFINABLE Cr MANIFOLD IS AFFINE
KAWAKAMI, TOMOHIRO;
  PDF(new window)
 Abstract
Let M
 Keywords
definable C manifolds;o-minimal;affine;
 Language
English
 Cited by
1.
DEFINABLE Cr FIBER BUNDLES AND DEFINABLE CrG VECTOR BUNDLES,;

대한수학회논문집, 2008. vol.23. 2, pp.257-268 crossref(new window)
1.
Smooth functions in o-minimal structures, Advances in Mathematics, 2008, 218, 2, 496  crossref(new windwow)
 References
1.
L. van den Dries, Tame topology and a-minimal structures, London Math. Soc. Lecture Note Ser. 248 (1998)

2.
L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540 crossref(new window)

3.
M. W. Hirsch, Differential manifolds, Springer, 1976

4.
T. Kawakami, Affineness of definable $C^r$ manifolds and its applications, Bull. Korean Math. Soc. 40, 149-157

5.
T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl, 123 (2002), 323-349 crossref(new window)

6.
T. Kawakami, Imbedding of manifolds defined on an a-minimal structures on (R, +, ., <), Bull. Korean Math. Soc. 36 (1999), 183-201

7.
M. Shiota, Abstract Nash manifolds, Proc. Amer. Math. Soc. 96 (1986), 155-162

8.
M. Shiota, Geometry of subanalyitc and semialgebraic sets, Progr. Math. 150 (1997)

9.
A. G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127-150 crossref(new window)