JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES
DUGGAL, B.P.; KUBRUSLY, C.S.; LEVAN, N.;
  PDF(new window)
 Abstract
A Hilbert Space operator T is of class Q if is nonnegative. Every paranormal operator is of class Q, but class-Q operators are not necessarily normaloid. It is shown that if a class-Q contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q
 Keywords
paranormal operators;invariant subspaces;proper contractions;
 Language
English
 Cited by
1.
Quasi-isometries in semi-Hilbertian spaces, Linear Algebra and its Applications, 2009, 430, 8-9, 2474  crossref(new windwow)
2.
On Wold-type decomposition, Linear Algebra and its Applications, 2012, 436, 9, 3065  crossref(new windwow)
 References
1.
T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169-178

2.
N. N. Chourasia and P. B. Ramanujan, Paranormal operators on Banach spaces, Bull. Austral. Math. Soc. 21 (1980), 161-168 crossref(new window)

3.
B. P. Duggal and S. V. Djordjevic, Generalized Weyl's theorem for a class of operators satisfying a norm condition, Math. Proc. R. Ir. Acad. 104 (2004), 75-81 (corrigendum submitted)

4.
B. P. Duggal, S. V. Djordjevic, and C. S. Kubrusly, Hereditarily normaloid contractions, Acta Sci. Math. (Szeged), in press

5.
B. P. Duggal, I. H. Jeon, and C. S. Kubrusly, Contractions satisfying the absolute value property $IAI^2{\leq}IA^2|$, Integral Equations Operator Theory 49 (2004), 141-148 crossref(new window)

6.
B. P. Duggal, C. S. Kubrusly, and N. Levan, Paranormal contractions and invariant subspaces, J. Korean Math. Soc. 40 (2003), 933-942 crossref(new window)

7.
T. Furuta. Invitation to Linear Operators, Taylor and Francis, London, 2001

8.
V. Istratcscu, T. Saito and T. Yoshino, On a class of operators, Tohoku Math. J. 18 (1966), 410-413 crossref(new window)

9.
C. S. Kubrusly, Hilbert Space Operators, Birkhauser, Boston, 2003

10.
C. S. Kubrusly and N. Levan, Proper contractions and invariant subspaces, Int. J. Math. Math. Sci. 28 (2001), 223-230 crossref(new window)

11.
C. Qiu, Paranormal operators with countable spectrum are normal operators, J. Math. Res. Exposition 7 (1987), 591-594

12.
T. Saito, Hyponormal operators and related topics, Lectures on Operator Algebras, New Orleans, 1970-1971, Lecture Notes in Math. Springer, Berlin 247 (1972), 533-664