JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONFORMAL TRANSFORMATIONS IN A TWISTED PRODUCT SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONFORMAL TRANSFORMATIONS IN A TWISTED PRODUCT SPACE
KIM, BYUNG-HAK; JUNG, SEOUNG-DAL; KANG, TAE-HO; PAK, HONG-KYUNG;
  PDF(new window)
 Abstract
The conharmonic transformation is a conformal trans-formation which satisfies a specified differential equation. Such a transformation was defined by Y. Ishii and we have generalized his results. Twisted product space is a generalized warped product space with a warping function defined on a whole space. In this paper, we partially classified the twisted product space and obtain a sufficient condition for a twisted product space to be locally Riemannian products.
 Keywords
conformally flat;conharmonic transformation;twisted product space;
 Language
English
 Cited by
 References
1.
Y. Agaoka and B. H. Kim, On conformally flat twisted product manifold, Mem. Fac. Imt. Arts and Sci., Hiroshima Univ. 23 (1997), 1-7

2.
A. Besse, Einstein manifolds, Springer, Berlin, 1987

3.
B. Y. Chen, Totally umbilical submanifolds, Soochow J. Math. 5 (1979), 9-37

4.
Y. Ishii, On conharmonic transformation, Tensor (N.S.) 7 (1957), 73-80

5.
B. H. Kim, I. B. Kim, and S. M. Lee, Conharmonic transformation and critical Riemannian metrics, Commun. Korean Math. Soc. 12 (1997), 347-354

6.
M. F. Lopez, E. Garcia-Rio, D. N. Kupeli, and B. Unal, A curvature condition for a twisted product to be a warped product, Manuscripta Math. 106 (2001), 213--217 crossref(new window)

7.
Y. Machida and H. Sato, Twistor spaces for real four-dimensional Lorentzian manifolds, Nagoya Math. J. 134 (1994), 107-135

8.
P. Peterser, Riemannian geometry, Springer, Berlin, 1997

9.
R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata 48 (1993), 15-25

10.
Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275

11.
K. Yano, Concircular geometry, I, II, III, IV, Proc. Imp. Acad. Tokyo 16 (1940), 195-200, 354-360, 442-448, 505-511

12.
K. Yano, Concircular geometry, I, II, III, IV, Proc. Imp. Acad. Tokyo 18 (1942), 446-451