JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH JENSEN TYPE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH JENSEN TYPE
LEE, YOUNG-WHAN;
  PDF(new window)
 Abstract
In this paper we solve a generalized quadratic Jensen type functional equation $m^2 f (\frac{x+y+z}{m}) + f(x) + f(y) + f(z)
 Keywords
hyers-ulam-rassias stability;quadratic functional equation;Popoviciu functional equation;
 Language
English
 Cited by
1.
ON THE SOLUTIONS OF A BI-JENSEN FUNCTIONAL EQUATION AND ITS STABILITY,;;

대한수학회보, 2006. vol.43. 3, pp.499-507 crossref(new window)
2.
APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS,;;

대한수학회보, 2010. vol.47. 1, pp.195-209 crossref(new window)
1.
Elementary remarks on Ulam–Hyers stability of linear functional equations, Journal of Mathematical Analysis and Applications, 2007, 328, 1, 109  crossref(new windwow)
2.
Popoviciu Type Equations on Cylinders, Results in Mathematics, 2015, 67, 3-4, 333  crossref(new windwow)
3.
On a direct method for proving the Hyers–Ulam stability of functional equations, Journal of Mathematical Analysis and Applications, 2010, 372, 1, 99  crossref(new windwow)
4.
On the Generalized Hyers-Ulam Stability of ann-Dimensional Quadratic and Additive Type Functional Equation, Journal of Applied Mathematics, 2014, 2014, 1  crossref(new windwow)
5.
On extension of the solutions of the Popoviciu type equations on groups, Acta Mathematica Hungarica, 2015, 147, 2, 338  crossref(new windwow)
6.
Ulam's stability of a generalization of the Fréchet functional equation, Journal of Mathematical Analysis and Applications, 2016, 442, 2, 537  crossref(new windwow)
 References
1.
G. L. Forti, Hyers- Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 146-190

2.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436 crossref(new window)

3.
D. H. Hyers, On the stability of the linear functional equation, Proc, Natl. Acad. Sci. USA 21 (1941), 222-224

4.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston/Basel/Berlin, 1998

5.
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153 crossref(new window)

6.
K. W. Jun, G. H. Kim, and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequationes Math. 60 (2000), 15-24 crossref(new window)

7.
S. M. Jung, Huers-Ulam-Rassias stability of functional equations, Dynam. Systems Appl. 6 (1997), 541-566

8.
S. M. Jung, Hyers- Uuim-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143

9.
S. M. Jung, On the Hyers- Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137 crossref(new window)

10.
S. M. Jung, On the Hyers- Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl. 232 (1999), 384-393 crossref(new window)

11.
G. H. Kim, On the stability of the quadratic mapping in normal space, IJMMs 25 (2001), no. 4, 217-229

12.
E. H. Lee, Y. W. Lee, and S. H. Park, Stability of a Jensen type functional Equations, J. Appl. Math. Comput. 10 (2002), no. 1-2, 283-295

13.
S. H. Lee and Y. W. Lee, Stability of a Popoviciu functional Equations, Nonlinear Funct. Anal. Appl. 7 (2002), no. 3, 413-429

14.
Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's Equation, J. Math. Anal. Appl. 238 (1999), 305-315 crossref(new window)

15.
Y. W. Lee, On the stability of a quadratic Jensen type functional Equation, J. Math. Anal. Appl. 270 (2002), 590-601 crossref(new window)

16.
Y. W. Lee, The stability of derivations on Banach algebras, Bull. Inst. Math. Acad. Sinica 28 (2000), 113-116

17.
Th. M. Rassias, On a problem of S. M Ulam and the asymptotic stability of the Cauchy functional equation with applications, General Inequalities 7, MFO, Oberwolfach, Birkhiiuser Verlag, Basel ISNM 123 (1997), 297-309

18.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130 crossref(new window)

19.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284 crossref(new window)

20.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300

21.
Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia, Univ. Babes-Bolyai XLIII 3 (1998), 89-124

22.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378 crossref(new window)

23.
Th. M. Rassias and P. Semrl, On the behavior of mapping that do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993

24.
T. Trif, Hyers- Ulam-Rassias stability of a Jensen type functional Equation, J. Math. Anal. Appl. 250 (2000), 579-588 crossref(new window)

25.
T. Trif, Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), 253-267 crossref(new window)

26.
S. M. Ulam, Problems in Modern Mathematics, Proc. Chap. VI. Wiley. New York, 1964