JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MOTION OF VORTEX FILAMENTS IN 3-MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MOTION OF VORTEX FILAMENTS IN 3-MANIFOLDS
PAK, HEE-CHUL;
  PDF(new window)
 Abstract
In this paper, the visco-Da-Rios equation; (0.1) () is investigated on 3-dimensional complete orientable Riemannian manifolds. The global existence of solution is discussed by trans-forming (0.1) into a cubic nonlinear Schrodinger equation for complete orient able Riemannian 3-manifolds of constant curvature.
 Keywords
nonlinear Schrodinger equation;Da-Rios equation;incompressible fluid;Hasimoto transform;Schrodinger maps;
 Language
English
 Cited by
 References
1.
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, 1998

2.
J. Bourgain, Global solutions of nonlinear Shriidinqer equations, Amer. Math. Soc. Colloq. Publ. 46 (1999)

3.
T. C. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford University Press Inc., New York, 1998

4.
N. Chang, J. Shatah, and K. Uhlenbeck, Shrodinger maps, Commun. Pure. Appl. Anal. 53 (2000), 590-602 crossref(new window)

5.
S. Gallot, D. HuIi, and J. Lfontaine, Riemannian Geometry, 2nd edition, Springer-Verlag, 1993

6.
H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech. 51 (1972), 477-485 crossref(new window)

7.
J. Jost, Riemannian Geometry and Geometric Analysis, Springer, 1995

8.
H. C. Pak, Flow via binormal in 3-manifolds, Preprint

9.
J. Langer and R. PerIine, Geometric Realizations of Fordy-Kulish nonlinear Schrddinqer systems, Pacific J. Math. 195 (2000), 157-178 crossref(new window)

10.
M. Spivak, A Comprehensive Introduction to Riemannian Geometry, vol. 2, 2nd edition, Publish or Perish, Inc., Boston, 1979

11.
C. L. Terng and K. Uhlenbeck, Schrodinqer flows on Grassmannians, Preprint math. DG/9901086