JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR
HER, JONG-IM; KI, U-HANG; LEE, SEONG-BAEK;
  PDF(new window)
 Abstract
In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure (, , g) in a complex projective space in terms of the structure tensor , the Ricci tensor S and the Jacobi operator with respect to the structure vector .
 Keywords
semi-invariant submanifold;Jacobi operator;distinguished normal;Ricci tensor;Hopf real hypersurface;
 Language
English
 Cited by
 References
1.
A. Bejancu, CR-submanifolds of a Kohler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142

2.
D. E. Blair, G. D. Ludden, and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27 (1976), 313-319 crossref(new window)

3.
T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499 crossref(new window)

4.
J. T. Cho and U. H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167 crossref(new window)

5.
J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 3 (1971), 333-340

6.
U. H. Ki and H. J. Kim, Semi-invariant submanifolds with lift-flat normal connection in a complex projective space, Kyungpook Math. J. 40 (2000), 185-194

7.
U. H. Ki and H. Song, Jacobi operators on a semi-invariant submanifold of codimension 3 in a complex projective space, Nihonkai Math. J. 14 (2003), 116

8.
U. H. Ki, H. Song, and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math. J. 11 (2000), 57-86

9.
R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press (1998(T.E. Cecil and S.S. Chern, eds.)), 233-305

10.
M. Okumura, Codimension reduction problem for real submanifolds of complex projective space, Colloq. Math. Soc. Janos Bolyai 56 (1989), 574-585

11.
M. Okumura, Normal curvature and real submanifold of the complex projective space, Geom. Dedicata 7 (1978), 509-517

12.
M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1973), 355-364 crossref(new window)

13.
H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25 (2001), 279-298

14.
R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19 (1973), 495-506

15.
R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516 crossref(new window)

16.
Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sugaku 16 (1964), 34-61

17.
K. Yano and U. H. Ki, On (f, g, u, v, w, ${\lambda}\;{\mu}\;{\nu}$)-structure satisfying ${\lambda}^2+{\mu}^2+{\nu}^2$ = 1, Kodai Math. Sem. Rep. 29 (1978), 285-307 crossref(new window)

18.
K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser (1983)