JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POSITIVE p-HARMONIC FUNCTIONS ON GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POSITIVE p-HARMONIC FUNCTIONS ON GRAPHS
KIM, SEOK-WOO; LEE, YONG-HAH;
  PDF(new window)
 Abstract
Suppose that an infinite graph G of bounded degree has finite number of ends, each of which is p-regular, where $1
 Keywords
p-harmonic function;Liouville property;
 Language
English
 Cited by
1.
Positive solutions for discrete boundary value problems involving the p-Laplacian with potential terms, Computers & Mathematics with Applications, 2011, 61, 1, 17  crossref(new windwow)
2.
THE -HARMONIC BOUNDARY AND -MASSIVE SUBSETS OF A GRAPH OF BOUNDED DEGREE, Bulletin of the Australian Mathematical Society, 2014, 89, 01, 149  crossref(new windwow)
3.
Graphs of bounded degree and thep-harmonic boundary, Pacific Journal of Mathematics, 2010, 248, 2, 429  crossref(new windwow)
4.
The Dirichlet boundary value problems forp-Schrödinger operators on finite networks, Journal of Difference Equations and Applications, 2011, 17, 05, 795  crossref(new windwow)
 References
1.
Th. Coulhon and L. Saloff-Coste, Varietes riemanniennes isometriques a l'infini, Rev. Mat. Iberoamericana 11 (1995), 687-726

2.
I. Holopainen, Rough isometries and p-harmonic functions with finite Dirichlet integral, Rev. Mat. Iberoamericana 10 (1994), 143-176

3.
I. Holopainen and P. M. Soardi, A strong Liouville theorem for p-harmonic functions on graphs, Anal. Acad. Sci. Fenn. Math. 22 (1997), 205-226

4.
I. Holopainen, p-harmonic functions on graphs and manifolds, Manuscripta Math. 94 (1997), 95-110 crossref(new window)

5.
M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact riemannian manifolds, J. Math. Soc. Japan 37 (1985), 391-413 crossref(new window)

6.
M. Kanai, Rough isometries and the parabolicity of riemannian manifolds, J. Math. Soc. Japan 38 (1986), 227-238 crossref(new window)

7.
S. W. Kim and Y. H. Lee, Rough isometry, harmonic functions and harmonic maps on a complete Riemannian manifold, J. Korean Math. Soc. 36 (1999), 73-95

8.
Y. H. Lee, Rough isometry and Dirichlet finite harmonic functions Riemannian manifolds, Manuscripta Math. 99 (1999), 311-328 crossref(new window)

9.
P. M. Soardi, Rough isometries and energy finite harmonic functions on graphs, Proc. Amer. Math. Soc. 119 (1993), 1239-1248