JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SCALAR EXTENSION OF SCHUR ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SCALAR EXTENSION OF SCHUR ALGEBRAS
Choi, Eun-Mi;
  PDF(new window)
 Abstract
Let K be an algebraic number field. If k is the maximal cyclotomic subextension in K then the Schur K-group S(K) is obtained from the Schur k-group S(k) by scalar extension. In the paper we study projective Schur group PS(K) which is a generalization of Schur group, and prove that a projective Schur K-algebra is obtained by scalar extension of a projective Schur k-algebra where k is the maximal radical extension in K with mild condition.
 Keywords
Schur algebra;projective Schur algebra;projective character;
 Language
English
 Cited by
 References
1.
E. Aljadeff and J. Sonn, Projective Schur division algebras are abelian crossed products, J. Algebra 163 (1994), 795-805 crossref(new window)

2.
J. R. Bastida, Field extensions and Galois theory, Encyclopedia of Mathematics and its applications 22, Addision-Wesley: Reading, Massachusetts, 1984

3.
G. Karpilovsky, Group representation, Elsevier Science, North Holland, 1 (1992), 3 (1994)

4.
F. Lorenz and H. Opolka, Einfache Algebren und projektive Darstellungen uber Zahlkopern, Math. Z. 162 (1978), 175-182 crossref(new window)

5.
R. Mollin, The Schur group of a field of characteristic zero, Pacific J. Math. 76 (1978), 471-478 crossref(new window)

6.
I. Reiner, Maximal orders, Academic Press: London, New York, San Francisco, 1975

7.
C. R. Riehm, The linear and quadratic Schur subgroups over the S-integers of a number field, Proc. Amer. Math. Soc. 107 (1989), no. 1, 83-87

8.
E. Weiss, Cohomology of groups, Academic Press, New York, 1969

9.
T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Mathematics 397, Springer-Verlag: Berlin, New York, 1974