JOURNAL BROWSE
Search
Advanced SearchSearch Tips
q-ANALOGUE OF EULER-BARNES' NUMBERS AND POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
q-ANALOGUE OF EULER-BARNES' NUMBERS AND POLYNOMIALS
Jang, Lee-Chae; Kim, Tae-Kyun;
  PDF(new window)
 Abstract
Recently, Kim[2,6] has introduced an interesting Euler­Barnes' numbers and polynomials. In this paper, we construct the q-analogue of Euler-Barnes' numbers and polynomials, and investigate their properties.
 Keywords
Euler numbers;Bernoulli numbers;zeta function;
 Language
English
 Cited by
1.
GENERALIZATION OF q-APOSTOL-TYPE EULERIAN NUMBERS AND POLYNOMIALS, AND THEIR INTERPOLATION FUNCTIONS,;;;

Advanced Studies in Contemporary Mathematics, 2015. vol.25. 2, pp.211-220 crossref(new window)
1.
Generating Functions for q-Apostol Type Frobenius–Euler Numbers and Polynomials, Axioms, 2012, 1, 3, 395  crossref(new windwow)
 References
1.
T. Kim, An invariant p-adic Integral associated with Daehee numbers, Integral Transforms Spec. Funct. 13 (2002), 65-69 crossref(new window)

2.
T. Kim, p-adic q-integral associated with Changhee-Barnes' q-Bernoulli polyno- mials, Integral Transforms Spec. Funct. 15 (2004)

3.
T. Kim, Kummer Congruence for the Bernoulli numbers of higher order, Appl. Math. Comput. 151 (2004), 589-593 crossref(new window)

4.
T. Kim, q-Riemann Zeta functions, Int. J. Math. Math. Sci. 2004 (2004), no. 12, 599-605

5.
T. Kim, Analytic continuation of multiple q-Zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), 71-76

6.
T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), 261-267

7.
T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299

8.
T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. 252 (2002), 179-187 crossref(new window)

9.
T. Kim, Some formulae for the q-Bernoulli and Euler polynomials of higher order, J. Math. Anal. Appl. 273 (2002), 236-242 crossref(new window)

10.
T. Kim, A note on q-multiple Zeta function, J. Physics 34 (2001), 643-646

11.
T. Kim, On p-adic q-Bernoulli numbers, J. Korean Math. Soc. 37 (2000), 27-30

12.
T. Kim, A note on Dirichlet L-series, Proc. Jangjeon Math. Soc. 6 (2004), 161-166

13.
T. Kim, A note on the q-analogue of multiple zeta function, Adv. Stud. Con- temp. Math. 8 (2004), 111-113