JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COUNTABLE RINGS WITH ACC ON ANNIHILATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COUNTABLE RINGS WITH ACC ON ANNIHILATORS
HIRANO YASUYUKI; KIM HONG KEE;
  PDF(new window)
 Abstract
We consider countable rings with ascending chain condition on right annihilators. We determine the structure of a countable right p-injective Baer ring, a countable semi prime quasi-Baer ring and a countable quasi-Baer biregular ring.
 Keywords
countable ring;ascending chain condition on annihilators;
 Language
English
 Cited by
 References
1.
E. P. Armendariz, On semiprime rings of bounded index, Proc. Amer. Math. Soc. 85 (1982), 146-148

2.
G. F. Birkenmeier, J. Y. Kim and J. K. Park, Rings with countably many direct summands, Comm. Algebra 28 (2000), 757-769 crossref(new window)

3.
C. Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179-191 crossref(new window)

4.
E. Formanek, Noetherian PI-rings, Comm. Algebra 1 (1974), 79-86 crossref(new window)

5.
J. Hannah, Quotient rings of semiprime rings with bounded index, Glasg. Math. J. 23 (1982), 53-64 crossref(new window)

6.
Y. Hirano, On nonsingular p-injective rings, Publ. Mat. 38 (1994), 455-461 crossref(new window)

7.
M. Ikeda and T. Nakayama,, On some characteristic properties of quasi-Frobenius and regular rings, Proc. Amer. Math. Soc. 5 (1954), 15-18

8.
N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, Providence, R. I., 1964

9.
J. Y. Kim and J. K, Park, When is a regular ring a semisimple Artinian ring?, Math. Japonica 45 (1997), 311-313

10.
C. Lanski, The cardinality of the center of a PI-ring, Canad. Math. Bull. 41 (1998), 81-85 crossref(new window)

11.
K. M. Rangaswamy, Regular and Baer rings, Proc. Amer. Math. Soc. 42 (1974), 354-358

12.
B. Stenstrom, Rings of Quotients, Springer-Verlag, Berlin-Heidelberg-New York, 1975