JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PURITY OF POLYNOMIAL MODULES AND INVERSE POLYNOMIAL MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PURITY OF POLYNOMIAL MODULES AND INVERSE POLYNOMIAL MODULES
Park, Sang-Won; Cho, Eun-Ha;
  PDF(new window)
 Abstract
In this paper we show that we can extend the purity of left R-modules to the case of polynomial modules, bipolynomial modules, and also inverse polynomial modules.
 Keywords
module;pure;pure submodule;inverse polynomial module;
 Language
English
 Cited by
1.
Generalized Inverse Power Series Modules, Communications in Algebra, 2011, 39, 8, 2779  crossref(new windwow)
 References
1.
A. S. McKerrow, On the Injective Dimension of Modules of Power Series, Quart J. Math. Oxford 25 (1974), no. 3, 359-368 crossref(new window)

2.
D. G. Northcott, Injective Envelopes and Inverse Polynomials, London Math. Soc. 2 (1974), 290-296

3.
S. Park, Inverse Ploynomials and Injective Covers, Comm. Algebra 21 (1993), 4599-4613 crossref(new window)

4.
S. Park, The Macaulay-Northcott Functor, Arch. Math. (Basel) 63 (1994), 225-230 crossref(new window)

5.
S. Park, Gorenstein Rings and Inverse Polynomials, Comm. Algebra 28 (2000), no. 2, 785-789 crossref(new window)

6.
S. Park, The General Structure of Inverse Polynomial Modules, Czechoslovak Math. J. 51 (2001), no. 126, 343-349 crossref(new window)

7.
J. Rotman, An Introduction to Homological Algebra, Academic Press Inc. New York, 1979