JOURNAL BROWSE
Search
Advanced SearchSearch Tips
QUASI SIMILARITY AND INJECTIVE p-QUASIHYPONORMAL OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
QUASI SIMILARITY AND INJECTIVE p-QUASIHYPONORMAL OPERATORS
Woo, Young-Jin;
  PDF(new window)
 Abstract
In this paper it is proved that quasisimilar n-tuples of tensor products of injective p-quasihyponormal operators have the same spectra, essential spectra and indices, respectively. And it is also proved that a Weyl n-tuple of tensor products of injective p-quasihyponormal operators can be perturbed by an n-tuple of compact operators to an invertible n-tuple.
 Keywords
quasisimilarity;p-quasihyponormal operator;
 Language
English
 Cited by
 References
1.
A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), 307-315 crossref(new window)

2.
L. Chen, Y. Zikun, and R. Yingbin, Common properties of operators RS and SR and p-hyponormal operators, Integral Equations Operator Theory 43 (1999), 313-325 crossref(new window)

3.
R. E. Curto, Applications of several complex variables to multiparameter spectral theory, Surveys of some recent results in operator theory, J. B. Conway and B. B. Morrel, eds., vol. II, Pitman Res. Notes in Math. Ser. 192, Longman Publ. Co., London, 1988, 25-90

4.
R. E. Curto, Problems in multivariable operator theory, Contemp. Math. 120, Amer. Math. Soc. Providence, RI, 1991

5.
B. P. Duggal, p-Hyponormal operators satisfy Bishop's condition ($\beta$), Integral Equations Operator Theory 40 (2001), 436-440 crossref(new window)

6.
B. P. Duggal, Tensor products of operators-strong stability and p-hyponormality, Glasg. Math. J. 42 (2000), 371-381 crossref(new window)

7.
B. P. Duggal and I. H. Jeon, On n-tuples of tensor products of p-hyponormal operators, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 11 (2004), 287-292

8.
P. Duggal and I. H. Jeon, On p-quasihyponormal operators, preprint, 2004

9.
J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves, Oxford University Press, Oxford, 1996

10.
C. Foias, I. B. Jung, E. Ko, and C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal transforms, Pacific J. Math. 209 (2003), 249-259

11.
R. Gelca, Compact perturbations of Fredholm n-tuples, Proc. Amer. Math. Soc. 122 (1994), 195-198

12.
I. H. Jeon and B. P. Duggal, p-Hyponormal operators and quasisimilarity, Integral Equations Operator Theory 49 (2004), 397-403 crossref(new window)

13.
I. H. Jeon, J. I. Lee, and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Inequal. Appl. 6 (2003), 309-315

14.
I. H. Kim, Tensor products of quasihyponormal operators, Math. Inequal. Appl., to appear

15.
M. Putinar, On Weyl spectrum in several variables, Math. Japonica 50 (1999), 355-357

16.
M. Putinar, Quasi-similarity of tuples with Bishop's property ($\beta$), Integral Equations Operator Theory 15 (1992), 1047-1052 crossref(new window)

17.
J. Snader, Bishop's condition ($\beta$), Glasg. Math. J. 26 (1985), 35-46 crossref(new window)

18.
K. Tanahashi and Uchiyama, Isolated point of spectrum of p-qusihyponormal operators, Linear Algebra Appl. 341 (2002), 345-350 crossref(new window)

19.
J. L. Taylor, The analytic functional mathcalculus for several commuting operators, Acta Math. 125 (1970), 1-38 crossref(new window)

20.
A. Uchiyama, Inequalities of Putnam and Berger-Shaw for p-quasihyponormal operators, Integral Equations Operator Theory 34 (1999), 91-106 crossref(new window)

21.
R.Wolff, Bishop's property ($\beta$) for tensor product tuples of operators, J. Operator Theory 42 (1999), 371-377

22.
R. Yingbin and Y. Zikun, Spectral structure and subdecomposability of p-hyponormal operators, Proc. Amer. Math. Soc. 128 (1999), 2069-2074