JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD
KIM, JEONG-SIK; TRIPATHI MUKUT MANI; CHOI, JAE-DONG;
  PDF(new window)
 Abstract
We prove that a (k, )-manifold with vanishing E­Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (k, )­manifolds with C-Bochner curvature tensor B satisfying B S
 Keywords
contact metric manifold;N(K)-contact metric manifold;Sasakian manifold;C-Bochner curvature tensor;Einstein manifold;
 Language
English
 Cited by
1.
A Study on Conservative C-Bochner Curvature Tensor in K-Contact and Kenmotsu Manifolds Admitting Semisymmetric Metric Connection, ISRN Geometry, 2012, 2012, 1  crossref(new windwow)
2.
A Study on Ricci Solitons in Kenmotsu Manifolds, ISRN Geometry, 2013, 2013, 1  crossref(new windwow)
3.
E-Bochner curvature tensor on generalized Sasakian space forms, Comptes Rendus Mathematique, 2016, 354, 8, 835  crossref(new windwow)
 References
1.
D. E. Blair, On the geometric meaning of the Bochner tensor, Geom. Dedicata 4 (1975), 33-38

2.
D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319-324 crossref(new window)

3.
, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002

4.
D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214 crossref(new window)

5.
S. Bochner, Curvature and Betti numbers, Ann. of Math. 50 (1949), no. 2, 77-93 crossref(new window)

6.
W. M. Boothby and H. C.Wang, On contact manifolds, Ann. of Math. 68 (1958), 721-734 crossref(new window)

7.
H. Endo, On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor, Colloq. Math. 62 (1991), no. 2, 293-297 crossref(new window)

8.
H. Endo, On the curvature tensor fields of a type of contact metric manifolds and of its certain submanifolds, Publ. Math. Debrecen 48 (1996), no. 3-4, 253-269

9.
T. Koufogiorgos, Contact Riemannian manifolds with constant $\varphi$-sectional curvature, Tokyo J. Math. 20 (1997), no. 1, 13-22 crossref(new window)

10.
M. Matsumoto and G. Chuman, On the C-Bochner curvature tensor, TRU Math. 5 (1969), 21-30

11.
M. Okumura, Some remarks on space with a certain contact structure, Tohoku Math. J. 14 (1962), 135-145 crossref(new window)

12.
B. J. Papantoniou, Contact Riemannian manifolds satisfying R($\xi$,X)$\cdot$R = 0 and ${\xi}{\in}(k,\mu)$-nullity distribution, Yokohama Math. J. 40 (1993), no. 2, 149-161

13.
G. Pathak, U. C. De, and Y.-H. Kim, Contact manifolds with C-Bochner curvature tensor, Bull. Calcutta Math. Soc. 96 (2004), no. 1, 45-50

14.
D. Perrone, Contact Riemannian manifolds satisfying R(X, $\xi){\cdot}$R = 0, Yokohama Math. J. 39 (1992), no. 2, 141-149

15.
S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441-448 crossref(new window)

16.
Y. Tashiro, On contact structures of tangent sphere bundles, Tohoku Math. J. 21 (1969), 117-143 crossref(new window)