JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON INDECOMPOSABLE 4-MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON INDECOMPOSABLE 4-MANIFOLDS
Cho, Yong-Seung; Hong, Yoon-Hi;
  PDF(new window)
 Abstract
In this note we show that there is an anti-symplectic involution on a simply-connected, closed, non-Kahler and symplectic 4-manifold X with a disjoint union of Riemann surfaces ${\amalg}^n_{i
 Keywords
non-Kahler symplectic 4-manifold;anti-symplectic involution;Dolgachev surface;Seiberg-Witten invariant;
 Language
English
 Cited by
 References
1.
S. Akbulut, On quotients of complex surfaces under complex conjugation, J. Reine. Angew. Math. 447 (1994), 83-90

2.
G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York and London, 1972

3.
Y. S. Cho, Cyclic group actions on gauge theory, Diffential. Geom. Appl. 6 (1996), 87-99 crossref(new window)

4.
Y. S. Cho and Y. H. Hong, Cyclic group actions on 4-manifold, Acta. Math. Hungar. 94 (2002), no. 4, 333-350 crossref(new window)

5.
Y. S. Cho and Y. H. Hong, Seiberg-Witten theory and anti-symplectic involutions, Glasg. Math. J. 45 (2003), 401-413 crossref(new window)

6.
Y. S. Cho and Y. H. Hong, Anti-symplectic involutions on non-Kahler symplectic 4-manifolds, Preprint

7.
M. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357-454 crossref(new window)

8.
R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. 142 (1995), 527-595 crossref(new window)

9.
R. E. Gompf and T. S. Mrowka, Irreducible 4-manifolds need not be complex, Ann. of Math. 138 (1993), 61-111 crossref(new window)

10.
R. E. Gompf and A. I. Stipsciz, 4-Manifolds and Kirby Calculus, Grad. Stud. Math.

11.
R. Kirby, Problems in low-dimensional topology, Berkeley, 1995

12.
P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797-808 crossref(new window)

13.
J. W. Morgan, T. S. Mrowka, and Z. Szabo, Product formulas along $T^3$ for Seiberg-Witten invariants, Math. Res. Lett. 4 (1997), 915-929 crossref(new window)

14.
J. W. Morgan, Z. Szabo, and C. Taubes, A product formula for the Seiberg- Witten invariants and the generalized Thom Conjecture, J. Differential Geom. 44 (1996), 706-788

15.
B. Ozbagci and A. I. Stipsciz, Non complex smooth 4-manifolds with genus 2- Lefschetz fibration

16.
A. I. Stipsciz, Manifolds not containing Gomph nuclei, Acta Math. 83 (1998), 107-113

17.
W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468

18.
C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), 809-822 crossref(new window)

19.
C. H. Taubes, The Seiberg-Witten invariants and the Gromov invariants, Math. Res. Lett. 2 (1995), 221-238 crossref(new window)

20.
S. Wang, Gauge theory and involutions, Oxford University Thesis, 1990

21.
S. Wang, A Vanishing theorem for Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), 305-310 crossref(new window)