JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPHERICAL FUNCTIONS ON PROJECTIVE CLASS ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPHERICAL FUNCTIONS ON PROJECTIVE CLASS ALGEBRAS
Choi, Eun-Mi;
  PDF(new window)
 Abstract
Let be a twisted group algebra with basis and be a partition of G. A projective class algebra associated with P is a subalgebra of generated by all class sums . A main object of the paper is to find interrelationships of projective class algebras in and in for H < G. And the a-spherical function will play an important role for the purpose. We find functional properties of a-spherical functions and investigate roles of functions as characters of projective class algebras.
 Keywords
spherical functions;group characters;
 Language
English
 Cited by
 References
1.
C. Apostolopoulos, M. Van den Bergh, and F. Van Oystaeyen, On Schur rings of group rings of finite groups, Comm. Algebra 20 (1992), no. 7, 2139-2152 crossref(new window)

2.
E. Bannai and T. Ito, Algebraic combinatorics I, Association schemes, The Ben- jamin/Cummings Publishing Co., Inc., Menlo Park, CA. 1984

3.
L. Delvaux and E. Nauwelaerts, Applications of Frobenius algebras to represen- tation theory of Schur algebras, J. Algebra 199 (1998), no. 2, 591-617 crossref(new window)

4.
W. Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amster- dam, 1967

5.
P. X. Gallagher, Functional equation for spherical functions on finite groups, Math. Z. 141 (1975), 77-81 crossref(new window)

6.
I. M. Gel'fand, Spherical functions in symmetric Riemann spaces, Doklady Akad. Nauk SSSR 70 (1950), 5-8

7.
R. Godement, A theory of spherical functions, I. Trans. Amer. Math. Soc. 73 (1952), 496-556 crossref(new window)

8.
I. M. Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994

9.
J. Karlof, The subclass algebra associated with a finite group and subgroup, Trans. Amer. Math. Soc. 207 (1975), 329-341 crossref(new window)

10.
G. Karpilovsky, Group representations, Vol.2, Vol.3, North-Holland, 1993, 1994

11.
K. H. Leung and S. H. Man, On Schur rings over cyclic groups, Israel J. Math. 106 (1998), no. 1, 251-267 crossref(new window)

12.
K. H. Leung and S. H. Man, On Schur rings over cyclic groups II, J. Algebra 183 (1996), no. 2, 273-285 crossref(new window)

13.
S. L. Ma, On association schemes, Schur rings, strongly regular graphs and partial difference sets, Ars Combin. 27 (1989), 211-220

14.
M. Muzychuk, The structure of rational Schur rings over cyclic groups, European J. Combin 14 (1993), no. 5, 479-490 crossref(new window)

15.
F. Roesler, Darstellungstheorie von Schur-Algebren, Math. Z. 125 (1972), 32-58 crossref(new window)

16.
I. Schur, Sur Theorie der einfact transitiven Permutationsgruppen, Sitzungsber, Preues. Akad. Wiss. Berlin, Phys.-Math. Kl. (1933), 589-623

17.
O. Tamaschke, On the theory of Schur-rings, Ann. Mat. Pura Appl. (4) 81 (1969), no. 4, 1-43 crossref(new window)

18.
O. Tamaschke, On Schur-rings which define a proper character theory on finite groups, Math. Z. 117 (1970), 340-360 crossref(new window)

19.
D. Travis, Spherical functions on finite groups, J. Algebra 29 (1974), 65-76 crossref(new window)

20.
H. Wielandt, Zur Theorie der einfach transitiven Permutationsgruppen II, Math. Z. 52 (1949), 384-393 crossref(new window)

21.
E. P. Wigner, On representations of certain finite groups, Amer. J. Math. 63 (1941), 57-63 crossref(new window)