JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MARCINKIEWICZ-ZYGMUND LAW OF LARGE NUMBERS FOR BLOCKWISE ADAPTED SEQUENCES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MARCINKIEWICZ-ZYGMUND LAW OF LARGE NUMBERS FOR BLOCKWISE ADAPTED SEQUENCES
Quang Nguyen Van; Thanh Le Van;
  PDF(new window)
 Abstract
In this paper we establish the Marcinkiewicz-Zygmund strong law of large numbers for blockwise adapted sequences. Some related results are considered.
 Keywords
Blockwise independent;blockwise adapted sequence;block martingale difference;Marcinkiewicz-Zygmund law of large numbers;
 Language
English
 Cited by
1.
Strong laws for blockwise martingale difference arrays in Banach spaces, Lobachevskii Journal of Mathematics, 2010, 31, 4, 326  crossref(new windwow)
 References
1.
B. von Bahr and C. G. Esseen, Inequalities for the r-th absolute moment of a sum of random variables, $1{\leq}r{\leq}2$, Ann. Math. Statist. 36 (1965), 299-303 crossref(new window)

2.
B. D. Choi and S. H. Sung, On convergence of $(S_{n}-ES_{n})/n^{1/r}$, 1 < r < 2, for pairwise independent random variables, Bull. Korean Math. Soc. 22 (1985), no. 2, 79-82

3.
N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 1, 119-122 crossref(new window)

4.
V. F. Gaposhkin, On the strong law of large numbers for blockwise-independent and blockwise-orthogonal random variables, Theory Probab. Appl. 39 (1994), no. 4, 677-684 crossref(new window)

5.
V. F. Gaposhkin, Series of block-orthogonal and block-independent systems, Izv. Vyssh. Uchebn. Zaved. Mat. (1990), no. 5, 12-18

6.
D. H. Hong and S. Y. Hwang, Marcinkiewicz-type Strong law of large numbers for double arrays of pairwise independent random variables, Int. J. Math. Math. Sci. 22 (1999), no. 1, 171-177 crossref(new window)

7.
D. H. Hong and A. I. Volodin, Marcinkiewicz-type law of large numbers for double array, J. Korean Math. Soc. 36 (1999), no. 6, 1133-1143

8.
F. Moricz, Strong limit theorems for blockwise m-independent and blockwise quasi- orthogonal sequences of random variables, Proc. Amer. Math. Soc. 101 (1987), no. 4, 709-715