JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEAK INVERSE SHADOWING AND GENERICITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEAK INVERSE SHADOWING AND GENERICITY
Choi, Tae-Young; Kim, Sung-Sook; Lee, Keon-Hee;
  PDF(new window)
 Abstract
We study the genericity of the first weak inverse shadowing property and the second weak inverse shadowing property in the space of homeomorphisms on a compact metric space, and show that every shift homeomorphism does not have the first weak inverse shadowing property but it has the second weak inverse shadowing property.
 Keywords
shadowing;inverse shadowing;weak inverse shadowing;generic;
 Language
English
 Cited by
1.
VARIOUS INVERSE SHADOWING IN LINEAR DYNAMICAL SYSTEMS,;;

대한수학회논문집, 2006. vol.21. 3, pp.515-526 crossref(new window)
2.
ORBITAL SHADOWING PROPERTY,;;

대한수학회보, 2008. vol.45. 4, pp.645-650 crossref(new window)
3.
Weak Strictly Persistence Homeomorphisms and Weak Inverse Shadowing Property and Genericity,;;

Kyungpook mathematical journal, 2009. vol.49. 3, pp.411-418 crossref(new window)
1.
Genericity of inverse shadowing property, Journal of Difference Equations and Applications, 2010, 16, 5-6, 667  crossref(new windwow)
2.
Weak Strictly Persistence Homeomorphisms and Weak Inverse Shadowing Property and Genericity, Kyungpook mathematical journal, 2009, 49, 3, 411  crossref(new windwow)
3.
Inverse Shadowing and Weak Inverse Shadowing Property, Applied Mathematics, 2012, 03, 05, 478  crossref(new windwow)
 References
1.
R. Corless and S. Y. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423 crossref(new window)

2.
P. Diamond, K. Lee, and Y. Han, Bishadowing and hyperbolicity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 8, 1779-1788 crossref(new window)

3.
P. Kloeden and J. Ombach, Hyperbolic homeomorphisms and bishadowing, Ann. Polon. Math. 65 (1997), no. 2, 171-177

4.
K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67 (2003), no. 1, 15-26 crossref(new window)

5.
K. Lee and J. Park, Inverse shadowing of circle maps, Bull. Austral. Math. Soc. 69 (2004), no. 3, 353-359 crossref(new window)

6.
S. Y. Pilyugin, Shadowing in dynamical systems, Lecture Notes in Mathematics 1706, Springer-Verlag, Berlin, 1999

7.
S. Y. Pilyugin, Inverse shadowing by continuous methods, Discrete Contin. Dyn. Syst. 8 (2002), no. 1, 29-38 crossref(new window)

8.
S. Y. Pilyugin, A. A. Rodionova, and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dyn. Syst. 9 (2003), no. 2, 287-308 crossref(new window)

9.
K. Sakai, Diffeomorphism with weak shadowing, Fund. Math. 168 (2001), no. 1, 57-75 crossref(new window)

10.
F. Takens, On Zeeman's tolerance stability conjecture, Lecture Notes in Mathe- matics 197, Springer-Verlag (1971), 209-219