JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SYMMETRIC BI-(σ, τ) DERIVATIONS OF PRIME AND SEMI PRIME GAMMA RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SYMMETRIC BI-(σ, τ) DERIVATIONS OF PRIME AND SEMI PRIME GAMMA RINGS
Ceran Sahin; Asci Mustafa;
  PDF(new window)
 Abstract
The purpose of this paper is to define the symmetric derivations on prime and semi prime Gamma rings and to prove some results concerning symmetric derivations on prime and semi prime Gamma rings.
 Keywords
derivation;prime rings;symmetric;
 Language
English
 Cited by
 References
1.
W. E. Barnes, On the $\Gamma$-rings of Nobusawa, Pacific J. Math. 18 (1966), no. 3, 411-422 crossref(new window)

2.
H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101 crossref(new window)

3.
M. Bresar and J. Vukman, On some additive mapping in rings with involution, Aequationes Math. 38 (1989), no. 2-3, 178-185 crossref(new window)

4.
M. Bresar and J. Vukman, On left derivations and related mappings, Proc Amer. Math. Soc. 110 (1990), no. 1, 7-16

5.
S. Ceran and I. Ozrutk, On $\alpha$-derivation of prime rings, Studia Univ. Babes, Bolyai Math. 41 (1996), no. 1, 15-20

6.
I. N. Hernstein, Topics in ring theory, The University of Chicago Press, Chicago, Ill.-London, 1969

7.
F. J. Jing, On derivations of $\Gamma$-rings, Qufu Shifin Daxue Xuebeo Ziran Kexue Ban 13 (1987), no. 4, 159-161

8.
S. Kyuno, On prime gamma rings, Pacific J. Math. 75, (1978), no. 1, 185-190 crossref(new window)

9.
Gy. Maksa, A remark on symmetric biadditive functions having nonnegative di- agonalization, Glas. Mat. Ser. III 15 (35) (1980), no. 2, 279-282

10.
Gy. Maksa, On the trace of symmmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307

11.
M. Soyturk, The commutativity in prime gamma rings with derivation, Turkish J. Math. 18 (1994), no. 2, 149-155

12.
J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequa- tiones Math. 38 (1989), no. 2-3, 245-254 crossref(new window)