JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ENERGY DECAY ESTIMATES FOR A KIRCHHOFF MODEL WITH VISCOSITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ENERGY DECAY ESTIMATES FOR A KIRCHHOFF MODEL WITH VISCOSITY
Jung Il-Hyo; Choi Jong-Sool;
  PDF(new window)
 Abstract
In this paper we study the uniform decay estimates of the energy for the nonlinear wave equation of Kirchhoff type with the damping constant ${\delta} > 0$ in a bounded domain .
 Keywords
stabilization;quasilinear hyperbolic equation;Kirchhoff equation;asymptotic behavior;energy decay;
 Language
English
 Cited by
1.
Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
2.
Stabilization of the Kirchhoff type wave equation with locally distributed damping, Applied Mathematics Letters, 2009, 22, 5, 719  crossref(new windwow)
 References
1.
M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and exponential decay for a Kirchhoff-Carrier model with vis- cosity, J. Math. Anal. Appl. 226 (1998), no. 1, 40-60 crossref(new window)

2.
G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl. 58 (1979), no. 3, 249-273

3.
G. Chen and D. L. Russell, A mathematical model for linear elastic systems with structural damping, Quart. Appl. Math. 39 (1982), no. 4, 433-454

4.
R. M. Christensen, Theory of Viscoelasticity, Academic Press, New York, 1971

5.
Julio G. Dix, Decay of solutions of a degenerate hyperbolic equation, Electron. J. Differential Equations 1998 (1998), no. 21, 1-10

6.
G. C. Gorain, Exponential energy decay estimate for the solutions of internally damped wave equation in a bounded domain, J. Math. Anal. Appl. 216 (1997), no. 2, 510-520 crossref(new window)

7.
I. H. Jung and Y. H. Lee, Exponential Decay for the solutions of wave equation of Kirchhoff type with strong damping, Acta Math. Hungar. 92 (2001), no. 1-2, 163-170 crossref(new window)

8.
G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig, 1883

9.
V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. (9) 69 (1990), no. 1, 33-54

10.
I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (1993), no. 3, 507-533

11.
J. E. Lions, On some questions in boundary value problems of mathematical physics : in International Symposium on Continuum Mechanics and Partial Dif- ferential Equations, Rio de Janeiro, 1977, Noth-Holland, Amsterdam, 1978

12.
J. Y. Park and I. H. Jung, On a class of quasilinear hyperbolic equations and Yosida approximations, Indian J. Pure Appl. Math. 30 (1999), no. 11, 1091- 1106

13.
J. Y. Park, I. H. Jung, and Y. H. Kang, Generalized quasilinear hyperbolic equa- tions and Yosida approximations, J. Aust. Math. Soc. 74 (2003), no. 1, 69-86 crossref(new window)

14.
J. Quinn and D. L. Russel, Asymptotic stability and energy decay for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh. Sect. A 77 (1977), 97-127

15.
Y. Yamada, On some quasilinear wave equations with dissipative terms, Nagoya Math. J. 87 (1982), 17-39

16.
E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems, As- ymptotic Anal. 1 (1988), no. 2, 161-185