JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BALANCEDNESS AND CONCAVITY OF FRACTIONAL DOMINATION GAMES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BALANCEDNESS AND CONCAVITY OF FRACTIONAL DOMINATION GAMES
Kim, Hye-Kyung; Fang Qizhi;
  PDF(new window)
 Abstract
In this paper, we introduce a fractional domination game arising from fractional domination problems on graphs and focus on its balancedness and concavity. We first characterize the core of the fractional domination game and show that its core is always non-empty taking use of dual theory of linear programming. Furthermore we study concavity of this game.
 Keywords
dominating function;fractional dominating number;fractional domination game;core;concavity;
 Language
English
 Cited by
1.
일반화된 분수 지배게임에 대한 균형성,김혜경;박준표;

Journal of the Korean Data and Information Science Society, 2009. vol.20. 1, pp.49-55
2.
THE CORES OF PAIRED-DOMINATION GAMES,;

East Asian mathematical journal, 2015. vol.31. 5, pp.717-725 crossref(new window)
1.
THE CORES OF PAIRED-DOMINATION GAMES, East Asian mathematical journal, 2015, 31, 5, 717  crossref(new windwow)
 References
1.
O. N. Bondareva, Some applications of the methods of linear programming to the theory of cooperative games, Problemy Kibernet. 10 (1963), 119-139 (in Russian)

2.
I. Curiel, Cooperative Game Theory and Applications-Cooperative Games Arising from Combinatorial Optimization Problems, Kluwer Academic Publishers, The Netherlands, 1997

3.
X. Deng, T. Ibaraki and H. Nagamochi, Algorithmic aspects of the core of com- binatorial optimization games, Math. Oper. Res. 24 (1999), no. 3, 751-766 crossref(new window)

4.
U. Faigle and W. Kern, Partition games and the core of hierarchically convex cost games, Universiteit Twente, faculteit der toegepaste wiskunde, Memorandum, No. 1269, 1995

5.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, INC. New York, 1998

6.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs-Advanced Topics, Marces Dekker, INC. New York, 1998

7.
G. Owen, On the core of linear production games, Math. Programming 9 (1975), no. 3, 358-370 crossref(new window)

8.
L. S. Shapley, Core of convex games, Internat. J. Game Theory 1 (1971), 11-26 crossref(new window)

9.
L. S. Shapley, On balanced sets and cores, Naval Res. Quart. 14 (1967), 453-460 crossref(new window)

10.
L. S. Shapley and M. Shubik, The assignment game, Internat. J. Game Theory 1 (1972), no. 2, 111-130 crossref(new window)

11.
B. van Velzen, Dominating set games, Oper. Res. Lett. 32 (2004), no. 6, 565-573 crossref(new window)