JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN MMAP[3]/PH/1 QUEUE WITH NEGATIVE CUSTOMERS AND DISASTERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AN MMAP[3]/PH/1 QUEUE WITH NEGATIVE CUSTOMERS AND DISASTERS
Shin, Yang-Woo;
  PDF(new window)
 Abstract
We consider a single-server queue with service time distribution of phase type where positive customers, negative customers and disasters arrive according to a Markovian arrival process with marked transitions (MMAP). We derive simple formulae for the stationary queue length distributions. The Laplace-Stieltjes transforms (LST's) of the sojourn time distributions under the combinations of removal policies and service disciplines are also obtained by using the absorption time distribution of a Markov chain.
 Keywords
MMAP;negative customers;disasters;queue length;sojourn time;fundamental matrix;
 Language
English
 Cited by
 References
1.
J. R. Artalejo, G-networks: a versatile approach for work removal in queueing networks, European J. Opera. Res. 126 (2000), no. 2, 233-249 crossref(new window)

2.
X. Chao, M. Miyazawa, and M. Pinedo, Queueing Networks; Customers, Signals and Product Form Solutions, John Wiley & Sons, 1999

3.
A. Chen and E. Renshaw, The M/M/1 queue with mass exodus and mass arrivals when empty, J. Appl. Probab. 34 (1997), no. 1, 192-207 crossref(new window)

4.
S. H. Choi, B. Kim, K. Sohraby, and B. D. Choi, On matrix-geometric solution of nested QBD chains, Queueing Sys. 43 (2003), no. 1-2, 5-28 crossref(new window)

5.
E. Gelenbe, Product-form queueing networks with negative and positive cus- tomers, J. Appl. Probab. 28 (1991), no. 3, 656-663 crossref(new window)

6.
A. Graham, Kronecker products and matrix calculus with applications, Ellis Hor- wood Ltd., 1981

7.
P. G. Harrison, The MM CPP/GE/c G-queue: Sojourn time distribution, Queueing Sys. 41 (2002), no. 3, 271-298 crossref(new window)

8.
P. G. Harrison and E. Pitel, Sojourn times in single-server queues with negative customers, J. Appl. Probab. 30 (1993), no. 4, 943-963 crossref(new window)

9.
Q. M. He and M. F. Neuts, Markov chains with marked transitions, Stochastic Process. Appl. 74 (1998), no. 1, 37-52 crossref(new window)

10.
Q. L. Li and Y. Q. Zhao, A MAP/G/1 queue with negative customers, Queueing Sys. 47 (2004), no. 1-2, 5-43 crossref(new window)

11.
M. F. Neuts, Matrix-geometric solutions in stochastic models, Johns Hopkins University Press, Baltimore and London, 1981

12.
M. F. Neuts, Structured stochastic matrices of M/G/1 type and their applications, Marcel Dekker, Inc., New York and Basel, 1989

13.
Y. W. Shin, Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal, J. Appl. Math. Stochastic Anal. 12 (1999), 339-356 crossref(new window)

14.
Y. W. Shin, BMAP/G/1 queue with correlated arrivals of customers and disasters, Oper. Res. Lett. 32 (2004), no. 4, 364-373 crossref(new window)

15.
Y. W. Shin and B. D. Choi, A queue with positive and negative arrivals governed by a Markov chain, Probab. Engrg. Inform. Sci. 17 (2003), no. 4, 487-501

16.
Y. Q. Zhao, W. Li, and A. S. Alfa, Duality results for block-structured transition matrices, J. Appl. Probab. 36 (1999), no. 4, 1045-1057 crossref(new window)