JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED TOEPLITZ ALGEBRA OF A CERTAIN NON-AMENABLE SEMIGROUP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED TOEPLITZ ALGEBRA OF A CERTAIN NON-AMENABLE SEMIGROUP
Jang, Sun-Young;
  PDF(new window)
 Abstract
We analyze a detailed picture of the algebraic structure of -algebras generated by isometric representations of the non-amenable semigroup P
 Keywords
isometric homomorphism;left regular isometric representation;reduced semigroup $C^*$-algebra;semigroup $C^*$-algebra;Toeplitz algebra;
 Language
English
 Cited by
1.
SPECTRUMS OF WEIGHTED LEFT REGULAR ISOMETRIES OF A STRONGLY PERFORATED SEMIGROUP,;;;;;

Korean Journal of Mathematics, 2009. vol.17. 1, pp.25-36
2.
WIENER-HOPF C*-ALGEBRAS OF STRONGL PERFORATED SEMIGROUPS,;

대한수학회보, 2010. vol.47. 6, pp.1275-1283 crossref(new window)
1.
C*-algebras generated by cancellative semigroups, Siberian Mathematical Journal, 2010, 51, 1, 12  crossref(new windwow)
2.
C*-algebras generated by semigroups, Russian Mathematics, 2009, 53, 10, 61  crossref(new windwow)
3.
On the extension of the Toeplitz algebra, Lobachevskii Journal of Mathematics, 2013, 34, 4, 377  crossref(new windwow)
4.
WIENER-HOPF C*-ALGEBRAS OF STRONGL PERFORATED SEMIGROUPS, Bulletin of the Korean Mathematical Society, 2010, 47, 6, 1275  crossref(new windwow)
 References
1.
L. A. Coburn, The C$^{\ast}$-algebra generated by an isometry, I, Bull. Amer. Math. Soc. 73 (1967), 722-726 crossref(new window)

2.
L. A. Coburn, The C$^{\ast}$-algebra generated by an isometry, II, Trans. Amer. Math. Soc. 137 (1969), 211-217 crossref(new window)

3.
J. Cuntz, Simple C$^{\ast}$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173-185 crossref(new window)

4.
K. R. Davidson and D. R. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), no. 2, 275-303 crossref(new window)

5.
R. G. Douglas, On the C$^{\ast}$-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), no. 3-4, 143-151 crossref(new window)

6.
S. Y. Jang, Reduced crossed products by semigroups of automorphisms, J. Ko- rean Math. Soc. 36 (1999), no. 1, 97-107

7.
M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139 (1996), no. 2, 415-440 crossref(new window)

8.
P. S. Muhly, A structure theory for isometric representations of a class of semi- groups, J. Reine Angew. Math. 255 (1972), 135-154

9.
G. J. Murphy, Crossed products of C$^{\ast}$-algebras by semigroups of automorphisms, Proc. London Math. Soc. (3) 68 (1994), no. 2, 423-448

10.
A. Nica, C$^{\ast}$-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1992), no. 1, 17-52

11.
G. K. Pedersen, C$^{\ast}$-algebras and their automorphism groups, London Mathe- matical Society Monograph 14, Academic Press, London, 1979