JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GREEN`S EQUIVALENCES OF BIRGET-RHODES EXPANSIONS OF FINITE GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GREEN`S EQUIVALENCES OF BIRGET-RHODES EXPANSIONS OF FINITE GROUPS
Choi, Keun-Bae; Lee, Ja-Eun; Lim, Yong-Do;
  PDF(new window)
 Abstract
In this paper we establish a counting method for the Green classes of the Birget-rhodes expansion of finite groups. As an application of the results, we derive explicit enumeration formulas for the Green classes for finite groups of order pq and a finite cyclic group of order , where p and q are arbitrary given distinct prime numbers.
 Keywords
Birget-Rhodes expansion;Green`s equivalence;
 Language
English
 Cited by
 References
1.
J. Baillieul, Green's relations in finite function semigroups, Aequationes Math. 7 (1971), 22-27 crossref(new window)

2.
J. -C. Birget and J. Rhodes, Almost finite expansions of arbitrary semigroups, J. Pure Appl. Algebra 32 (1984), no. 3, 239-287 crossref(new window)

3.
J. -C. Birget and J. Rhodes, Group theory via global semigroup theory, J. of Algebra 120 (1989), no. 2, 284-300 crossref(new window)

4.
K. Choi and Y. Lim, Birget-Rhodes expansion of groups and inverse monoids of Mobius type, Internat. J. Algebra Comput. 12 (2002), no. 4, 525-533 crossref(new window)

5.
R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3481-3494

6.
J. M. Howie, An Introduction to Semigroup Theory, Academic Press, San Diego, 1976

7.
J. Kellendonk and M. V. Lawson, Partial actions of groups, Internat. J. Algebra Comput. 14 (2004), no. 1, 87-114 crossref(new window)

8.
M. V. Lawson, Inverse semigroups, The theory of partial symmetries, World Sci- entific Publ, Singapore, 1998

9.
M. B. Szendrei, A note on Birget-Rhodes expansion of groups, J. Pure Appl. Algebra 58 (1989), no. 1, 93-99 crossref(new window)