JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BEST APPROXIMATIONS AND ORTHOGONALITIES IN 2κ-INNER PRODUCT SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BEST APPROXIMATIONS AND ORTHOGONALITIES IN 2κ-INNER PRODUCT SPACES
Kim, Seong-Sik; Crasmareanu Mircea;
  PDF(new window)
 Abstract
In this paper, some characterizations of representation for continuous linear functionals on -inner product spaces in terms of best approximations and orthogonalities are given.
 Keywords
-inner product;-normed space;-orthogonality best approximation;proximinal set;
 Language
English
 Cited by
 References
1.
M. Crasmareanu, Projections on complete, finite-dimensional Riemannian man- ifolds, An. Univ. Timisoara, Ser. Mat.-Inform. 33 (1995), 185-194

2.
M. Crasmareanu and S. S. Dragomir, 2k-inner products and 2k-Riemannian Metrics, RGMIA Res. Rep. Coll. 18 (2000)

3.
M. Crasmareanu and S. S. Dragomir, 2k-inner products in real linear spaces, Demonstratio Math. 35 (2002), no. 3, 645-56

4.
S. S. Dragomir, A characterization of elements of best approximation in real normed linear spaces, Studia Univ. Babes-Bolyai Math. 33 (1988), no. 3, 74-80

5.
S. S. Dragomir, Repersentation of continuous linear functionals on complete SQ-inner- product spaces, An. Univ. Timisoara Ser. Stiint. Mat. 30 (1992), 241-250

6.
S. S. Dragomir and I. Muntean, Linear and continuous functional on complete Q-inner product spaces, Babes-Bolyai Univ. Sem. Math. Anal. 7 (1987), 59-68

7.
S. S. Dragomir and N. M. Ionescu, New properties of Q-inner-product spaces, Zb. Rad. (Kragujevac) 14 (1993), 19-24

8.
R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292 crossref(new window)

9.
S. S. Kim, Y. J. Cho, and S. S. Dragomir, Orthogonalities and decomposition theorems for 2k-normed spaces and applications, preprint

10.
S. S. Kim, Y. J. Cho, and T. D. Narang, Some remarks on orthogonality and best approximation, Demonstratio Math. 30 (1997), no. 2, 293-300

11.
I. Singer, Best Approximation in Normed Linear Spaces by elements of Linear Subspaces, Springer-Verlag, New York, 1970