JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE QUASIHYPERBOLIC METRIC AND ANALOGUES OF THE HARDY-LITTLEWOOD PROPERTY FOR α = 0 IN UNIFORMLY JOHN DOMAINS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE QUASIHYPERBOLIC METRIC AND ANALOGUES OF THE HARDY-LITTLEWOOD PROPERTY FOR α = 0 IN UNIFORMLY JOHN DOMAINS
Kim, Ki-Won;
  PDF(new window)
 Abstract
We characterize the class of uniformly John domains in terms of the quasihyperbolic metric and from the result we get some analogues of the Hardy-Littlewood property for in uniformly John domains.
 Keywords
the quasihyperbolic metric;the Hardy-Littlewood property and uniformly John domains;
 Language
English
 Cited by
1.
INNER UNIFORM DOMAINS, THE QUASIHYPERBOLIC METRIC AND WEAK BLOCH FUNCTIONS,;

대한수학회보, 2012. vol.49. 1, pp.11-24 crossref(new window)
2.
INNER UNIFORM DOMAINS AND THE APOLLONIAN INNER METRIC,;;

대한수학회보, 2013. vol.50. 6, pp.1873-1886 crossref(new window)
1.
INNER UNIFORM DOMAINS, THE QUASIHYPERBOLIC METRIC AND WEAK BLOCH FUNCTIONS, Bulletin of the Korean Mathematical Society, 2012, 49, 1, 11  crossref(new windwow)
2.
INNER UNIFORM DOMAINS AND THE APOLLONIAN INNER METRIC, Bulletin of the Korean Mathematical Society, 2013, 50, 6, 1873  crossref(new windwow)
 References
1.
Z. Balogh and A. Volberg, Boundary Harnack principle for separated semihy- perbolic repellers, harmonic measure applications, Rev. Mat. Iberoamericana 12 (1996), no. 2, 299-336

2.
Z. Balogh and A. Volberg, Geometric localization, uniformly John property and separated semihy- perbolic dynamics, Ark. Mat. 34 (1996), no. 1, 21-49 crossref(new window)

3.
F. W. Gehring, K. Hag, and O. Martio, Quasihyperbolic geodesics in John do- mains, Math. Scand. 65 (1989), no. 1, 75-92

4.
F. W. Gehring and O. Martio, Quasidisks and the Hardy-Littlewood property, Complex Variables Theory Appl. 2 (1983), no. 1, 67-78 crossref(new window)

5.
F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203-219 crossref(new window)

6.
F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50-74 crossref(new window)

7.
F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172-199 crossref(new window)

8.
G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403-439 crossref(new window)

9.
K. Kim, Lipschitz class, growth of derivative and uniformly John domains, East Asian Math. J. 19 (2003), 291-303

10.
K. Kim, Hardy-Littlewood property with the inner length metric, Commun. Ko- rean Math. Soc. 19 (2004), no. 1, 53-62 crossref(new window)

11.
K. Kim and N. Langmeyer, Harmonic measure and hyperbolic distance in John disks, Math. Scand. 83 (1998), no. 2, 283-299

12.
R. Kaufman and J. -M. Wu, Distances and the Hardy-Littlewood property, Com- plex Variables Theory Appl. 4 (1984), no. 1, 1-5

13.
N. Langmeyer, The quasihyperbolic metric, growth, and John domains, Univer- sity of Michigan Ph.D. Thesis (1996)

14.
N. Langmeyer, The quasihyperbolic metric, growth, and John domains, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 205-224

15.
V. Lappalainen, Lip$_{h}$-extension domains, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 56 (1985), 52pp

16.
R. Nakki and J. Vaisala, John disks, Exposition. Math. 9 (1991), no. 1, 3-43