A FIXED POINT APPROACH TO THE STABILITY OF QUADRATIC FUNCTIONAL EQUATION

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 43, Issue 3, 2006, pp.531-541
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2006.43.3.531

Title & Authors

A FIXED POINT APPROACH TO THE STABILITY OF QUADRATIC FUNCTIONAL EQUATION

Jung, Soon-Mo; Kim, Tae-Soo; Lee, Ki-Suk;

Jung, Soon-Mo; Kim, Tae-Soo; Lee, Ki-Suk;

Abstract

[ ] and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we adopt the idea of and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation for a large class of functions from a vector space into a complete space.

Keywords

Hyers-Ulam-Rassias stability;quadratic functional equation;fixed point method;

Language

English

Cited by

1.

A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces,;

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

References

1.

L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Art. 4, 7 pp

2.

L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43-52

3.

P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86

4.

S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64

5.

J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309

6.

G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190

7.

D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224

8.

D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel/Boston, 1998

9.

D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153

10.

S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations, Dynam. Sys tems Appl. 6 (1997), no. 4, 541-566

11.

S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137

12.

S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001

13.

V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), no. 1, 91-96

14.

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300

15.

Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130

16.

F. Skof, Proprieta locali e approssimazione di operatori , Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129

17.

S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publisher, New York, 1960