JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE WEAK LAWS WITH RANDOM INDICES FOR PARTIAL SUMS FOR ARRAYS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE WEAK LAWS WITH RANDOM INDICES FOR PARTIAL SUMS FOR ARRAYS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES
Sung, Soo-Hak; Hu, Tien-Chung; Volodin, Andrei I.;
  PDF(new window)
 Abstract
Sung et al. [13] obtained a WLLN (weak law of large numbers) for the array of random variables under a Cesaro type condition, where and large two sequences of integers. In this paper, we extend the result of Sung et al. [13] to a martingale type p Banach space
 Keywords
arrays of random elements;convergence in probability;martingale 쇼;e p Banach space;weak law of large numbers;randomly indexed sums;martingale difference sequence;Cesaro type condition;
 Language
English
 Cited by
1.
WEAK LAW OF LARGE NUMBERS FOR ADAPTED DOUBLE ARRAYS OF RANDOM VARIABLES,;;

대한수학회지, 2008. vol.45. 3, pp.795-805 crossref(new window)
 References
1.
A. Adler, A. Rosalsky, and A. Volodin, A mean convergence theorem and weak law for arrays of random elements in martingale type p Banach spaces, Statist. Probab. Lett. 32 (1997), no. 2, 167-174 crossref(new window)

2.
S. E. Ahmed, S. H. Sung, and A. Volodin, Mean convergence theorem for arrays of random elements in martingale type p Banach spaces, Bull. Inst. Math. Acad. Sinica 30 (2002), no. 2, 89-95

3.
A. Gut, The weak law of large numbers for arrays, Statist. Probab. Lett. 14 (1992), no. 1, 49-52 crossref(new window)

4.
J. Hoffmann-Jorgensen and G. Pisier, The law of large numbers and the central limit theorem in Banach spaces, Ann. Probability 4 (1976), no. 4, 587-599 crossref(new window)

5.
D. H. Hong and S. Lee, A general weak law of large numbers for arrays, Bull. Inst. Math. Acad. Sin. 24 (1996), no. 3, 205-209

6.
D. H. Hong and K. S. Oh, On the weak law of large numbers for arrays, Statist. Probab. Lett. 22 (1995), no. 1, 55-57 crossref(new window)

7.
D. H. Hong, M. Ordonez Cabrera, S. H. Sung, and A. Volodin, On the weak law for randomly indexed partial sums for arrays of random elements in martingale type p Banach spaces, Statist. Probab. Lett. 46 (2000), no. 2, 177-185 crossref(new window)

8.
P. Kowalski and Z. Rychlik, On the weak law of large numbers for randomly indexed partial sums for arrays, Ann. Univ. Mariae Curie-Sklodowska Sect. A 51 (1997), no. 1, 109-119

9.
G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326-350 crossref(new window)

10.
G. Pisier, Probabilistic methods in the geometry of Banach spaces, in: G. Lette and M. Pratelli, Eds., Probability and Analysis, Lectures given at the 1st 1985 Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Varenna(Como), Italy, May 31-June 8, 1985, Lecture Notes in Mathematics (Springer-Verlag, Berlin), Vol. 1206 (1986), 167-241

11.
F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374 crossref(new window)

12.
S. H. Sung, Weak law of large numbers for arrays, Statist. Probab. Lett. 38 (1998), no. 2, 101-105 crossref(new window)

13.
S. H. Sung, T.-C. Hu, and A. Volodin, On the weak laws for arrays of random variables, Statist. Probab. Lett. 72 (2005), no. 4, 291-298 crossref(new window)