inequality;"/> inequality;"/> FEKETE-SZEGÖ PROBLEM FOR SUBCLASSES OF STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS | Korea Science
JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FEKETE-SZEGÖ PROBLEM FOR SUBCLASSES OF STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FEKETE-SZEGÖ PROBLEM FOR SUBCLASSES OF STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS
Shanmugam, T.N.; Ramachandram, C.; Ravichandran, V.;
  PDF(new window)
 Abstract
In the present investigation, sharp upper bounds of for functions $f(z)
 Keywords
analytic functions;starlike functions;convex functions;subordination;coefficient problem; inequality;
 Language
English
 Cited by
1.
Multivalent functions with respect to n-ply points and symmetric conjugate points, Computers & Mathematics with Applications, 2010, 60, 11, 2926  crossref(new windwow)
2.
Certain Bound forq-Starlike andq-Convex Functions with respect to Symmetric Points, International Journal of Mathematics and Mathematical Sciences, 2015, 2015, 1  crossref(new windwow)
3.
Fekete-Szegö Inequalities of a Subclass of Multivalent Analytic Functions, Annals of West University of Timisoara - Mathematics and Computer Science, 2016, 54, 1  crossref(new windwow)
4.
Initial Coefficients of Biunivalent Functions, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
5.
Fekete-Szegö Inequalities for Starlike Functions with respect tok-Symmetric Points of Complex Order, Journal of Complex Analysis, 2014, 2014, 1  crossref(new windwow)
6.
On Classes of Functions Related to Starlike Functions with Respect to Symmetric Conjugate Points Defined by a Fractional Differential Operator, Complex Analysis and Operator Theory, 2011, 5, 3, 647  crossref(new windwow)
7.
On Starlike and Convex Functions with Respect to -Symmetric Points, International Journal of Mathematics and Mathematical Sciences, 2011, 2011, 1  crossref(new windwow)
8.
On Harmonic Functions Defined by Differential Operator with Respect tok-Symmetric Points, International Journal of Mathematics and Mathematical Sciences, 2014, 2014, 1  crossref(new windwow)
9.
Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Mathematics, 2016, 3, 1  crossref(new windwow)
10.
Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Applied Mathematics Letters, 2012, 25, 3, 344  crossref(new windwow)
 References
1.
B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745 crossref(new window)

2.
M. Darus and D. K. Thomas, On the Fekete-Szego theorem for close-to-convex functions, Math. Japon. 44 (1996), no. 3, 507-511

3.
M. Darus and D. K. Thomas, On the Fekete-Szego theorem for close-to-convex functions, Math. Japon. 47 (1998), no. 1, 125-132

4.
B. A. Frasin and M. Darus, On the Fekete-Szego problem, Int. J. Math. Math. Sci. 24 (2000), no. 9, 577-581 crossref(new window)

5.
A. W. Goodman, Uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92

6.
W. Janowski, Some extremal problems for certain families of analytic functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. 21 (1973), 17-25

7.
W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang(Eds.), Internat. Press (1994), 157-169

8.
S. Owa, On the distortion theorems I, Kyungpook Math. J. 18 (1978), no. 1, 53-59

9.
S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), no. 5, 1057-1077 crossref(new window)

10.
V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 20 (2004), no. 1, 31-37

11.
V. Ravichandran, M. Darus, M. Hussain Khan, and K. G. Subramanian, Fekete-Szego inequality for certain class of analytic functions, Aust. J. Math. Anal. Appl. 1 (2004), no. 2, Art. 4, 7, pp

12.
V. Ravichandran, A. Gangadharan, and M. Darus, Fekete-Szego inequality for certain class of Bazilevic functions, Far East J. Math. Sci. (FJMS) 15 (2004), no. 2, 171-180

13.
F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196

14.
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75 crossref(new window)

15.
H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math. 37 (1985), no. 1, 48-61 crossref(new window)

16.
H. M. Srivastava, A. K. Mishra, and M. K. Das, The Fekete-Szego problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2001), no. 2, 145-163 crossref(new window)

17.
H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon. 29 (1984), no. 3, 383-389

18.
H. M. Srivastava and S. Owa, Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press/John Wiley and Songs, Chichester/New York, 1989

19.
N. Tuneski and M. Darus, Fekete-Szego functional for non-Bazilevic functions, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 18 (2002), no. 2, 63-65