JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE ALTERNATING SUMS OF POWERS OF CONSECUTIVE q-INTEGERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE ALTERNATING SUMS OF POWERS OF CONSECUTIVE q-INTEGERS
Rim, Seog-Hoon; Kim, Tae-Kyun; Ryoo, Cheon-Seoung;
  PDF(new window)
 Abstract
In this paper we construct q-Genocchi numbers and polynomials. By using these numbers and polynomials, we investigate the q-analogue of alternating sums of powers of consecutive integers due to Euler.
 Keywords
Genocchi numbers and polynomials;q-Genocchi numbers and polynomials;alternating sums of powerw;
 Language
English
 Cited by
1.
ON THE ALTERNATING SUMS OF POWERS OF CONSECUTIVE q-INTEGERS,;;;

대한수학회보, 2006. vol.43. 3, pp.611-617 crossref(new window)
1.
Some families of Genocchi type polynomials and their interpolation functions, Integral Transforms and Special Functions, 2012, 23, 12, 919  crossref(new windwow)
 References
1.
J. Faulhaber, Academia Algebrae, Darinnen die miraculosische inventiones zu den hochsten Cossen weiters continuirt und profitiert werden, Augspurg, bey Johann Ulrich Schonigs, 1631

2.
K. C. Garrett and K. Hummel, A combinatorical proof of the sum of q-cubes, Electro. J. Combin. 11 (2004), no. 1, Research Paper 9, 6pp

3.
T. Kim, L.-C. Jang, and H. K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. Ser. A Math. Sci. 77 A (2001), no. 8, 139-141

4.
T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 1, 15-18

5.
T. Kim, A note on the alternating sums of powers of consecutive integers, arXiv.org:math/0508233 1 (2005), 1-4

6.
T. Kim, A note on exploring the sums of powers of consecutive q-integers, Advan. Stud. Contemp. Math. (Kyungshang) 11 (2005), no. 1, 137-140

7.
T. Kim, Analytic continuation of multiple q-Zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76

8.
T. Kim, C. S. Ryoo, L. C. Jang, and S. H. Rim, Exploring the sums of powers of consecutive q-integers, Inter. J. Math. Edu. Sci. Tech. 36 (2005), no. 8, 947-956 crossref(new window)

9.
D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 61 (1993), no. 203, 277-294 crossref(new window)

10.
M. Schlosser, q-analogues of the sums of consecutive integers squares, cubes, quarts, quints, Electro. J. Comb. 11 (2004), no. 1, Reserch Paper 71, 12pp

11.
Y.-Y. Shen, A note on the sums of powers of consecutive integers, Tunghai Science, 5 (2003), 101-106

12.
Y. Simsek, D. Kim, T. Kim, and S. H. Rim, A note on the sums of powers of consecutive q-integers, J. Appl. Funct. Different. Equat. 1 (2006), no. 1, 10-25

13.
S. O. Warnaar, On the q-analogues of the sums of cubes, Electro. J. Comb. 11 (2004), no. 1, Note 13, 2pp