JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE RANGE CLOSURE OF AN ELEMENTARY OPERATOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE RANGE CLOSURE OF AN ELEMENTARY OPERATOR
Canavati Jose Angel; Djordjevic Slavisa V.; Duggal Bhagwati Prasad;
  PDF(new window)
 Abstract
Let be Hilbert space contractions, and let be the elementary operator . A number of conditions which are equivalent to ' has closed range' are proved.
 Keywords
elementary operators;quasinilpotent part;numerical range;pole;orthogonality;
 Language
English
 Cited by
1.
Various Notions of Orthogonality in Normed Spaces, Acta Mathematica Scientia, 2013, 33, 5, 1387  crossref(new windwow)
 References
1.
P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 791-807

2.
J. Anderson and C. Foias, Properties which normal operators share with normal derivations and related operators, Pacific J. Math. 61 (1975), no. 2, 313-325 crossref(new window)

3.
F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Lond. Math. Soc. Lecture Notes Series 2, 1971

4.
F. F. Bonsall and J. Duncan, Numerical ranges II, Lond. Math. Soc. Lecture Notes Series 10, Cambridge University Press, New York-London, 1973

5.
B. P. Duggal and R. E. Harte, Range-kernel orthogonality and range closure of an elementary operator, Monatsch. Math. 143 (2004), no. 3, 179-187 crossref(new window)

6.
N. Dunford and J. T. Schwartz, Linear Operators, Part I, A Wiley-Interscience Publication, New York, 1968

7.
M. R. Embry and M. Rosenblum, Spectra, tensor products, and linear operator equations, Pacific J. Math. 53 (1974), 95-107 crossref(new window)

8.
H. G. Heuser, Functional Analysis, A Wiley-Interscience Publication, 1982

9.
K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Lond. Math. Soc. Monographs (N. S.) 20, Oxford Univ. Press, 2000

10.
M. Mbekhta, Generalisation de la decomposition de Kato aux operateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), no. 2, 159-175 crossref(new window)

11.
A. M. Sinclair, Eigenvalues in the boundary of the numerical range, Pacific J. Math. 35 (1970), 231-234 crossref(new window)

12.
A. Turnsek, Orthogonality in $C_p$ classes, Monatsh. Math. 132 (2001), no. 4, 349-354 crossref(new window)