JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON WEIGHTED WEYL SPECTRUM, II
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON WEIGHTED WEYL SPECTRUM, II
Arora Subhash Chander; Dharmarha Preeti;
  PDF(new window)
 Abstract
In this paper, we show that if T is a hyponormal operator on a non-separable Hilbert space H, then , where is the weighted Weyl spectrum of weight a with . We also give some conditions under which the product of two operators is and its converse implication holds, too. Finally, we show that the weighted Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions under certain conditions.
 Keywords
weighted spectrum;weighted Weyl spectrum; operator;
 Language
English
 Cited by
1.
On <i>α</i>-Weyl Operators, Advances in Pure Mathematics, 2016, 06, 03, 138  crossref(new windwow)
 References
1.
S. C. Arora and P. Arora, On operators satisfying Re $\sigma_{\alpha}$(T) = $\sigma_{\alpha}$(Re T), J. Indian Math. Soc. 48 (1984), no. 1-4, 201-204

2.
S. K. Berberian, Conditions on an operator implying Re $\sigma_{\alpha}$(T) = $\sigma_{\alpha}$(Re T), Trans. Amer. Math. Soc. 154 (1971), 267-272 crossref(new window)

3.
S. R. Caradus, W. E. Pfaffenberger, and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974

4.
J. B. Conway, Subnormal operators, Pitman, Boston, 1981

5.
P. Dharmarha, Weighted Weyl spectrum, Preprint

6.
G. Edgar, J. Ernest, and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), no. 1, 61-80 crossref(new window)

7.
W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61-64 crossref(new window)

8.
J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176 crossref(new window)

9.
K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212