JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE STABILITY OF INVOLUTIVE A-QUADRATIC MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE STABILITY OF INVOLUTIVE A-QUADRATIC MAPPINGS
Park, Won-Gil; Bae, Jae-Hyeong;
  PDF(new window)
 Abstract
In this paper, we will investigate the Hyers-Ulam stability of an involutive A-quadratic mapping.
 Keywords
stability;involutive A-quadratic mapping;
 Language
English
 Cited by
1.
ON FUNCTIONAL INEQUALITIES ASSOCIATED WITH JORDAN-VON NEUMANN TYPE FUNCTIONAL EQUATIONS,;

대한수학회논문집, 2008. vol.23. 3, pp.371-376 crossref(new window)
2.
APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS,;;

대한수학회보, 2010. vol.47. 1, pp.195-209 crossref(new window)
 References
1.
J. Aczel and J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, Cambridge, 1989

2.
J.-H. Bae and K.-W. Jun, On the generalized Hyers-Ulam-Rassias stability of an n-dimensional quadratic functional equation, J. Math. Anal. Appl. 258 (2001), no. 1, 183-193 crossref(new window)

3.
F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag New York, Heidelberg and Berlin, 1973

4.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59-64 crossref(new window)

5.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi-mately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436 crossref(new window)

6.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224

7.
K.-W. Jun, J.-H. Bae, and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of ann-dimensional Pexiderized quadratic equation, Math. Ineq. Appl. 7 (2004), no. 1, 63-77

8.
K.-W. Jun, J.-H. Bae, and W.-G. Park, Partitioned functional inequalities in Banach modules and approximate algebra homomorphisms, Math. Ineq. Appl. 6 (2003), no. 4, 715-726

9.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel-Boston, 1998

10.
R. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), no. 2, 249-266

11.
C.-G. Park, Functional equations in Banach modules, Indian J. Pure Appl. Math. 33 (2002), no. 7, 1077-1086

12.
C.-G. Park, Multilinear mappings in Banach modules over a $C^{*}$-algebra, Indian J. Pure Appl. Math., to appear

13.
C.-G. Park and J.-K. Shin, Generalized Jensens equations in Banach modules, Indian J. Pure Appl. Math. 33 (2002), no. 12, 1867-1875

14.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300

15.
F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 crossref(new window)

16.
S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964

17.
J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc. 100 (1987), no. 1, 133-136