JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FUGLEDE-PUTNAM THEOREM FOR p-HYPONORMAL OR CLASS y OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FUGLEDE-PUTNAM THEOREM FOR p-HYPONORMAL OR CLASS y OPERATORS
Mecheri, Salah; Tanahashi, Kotaro; Uchiyama, Atsushi;
  PDF(new window)
 Abstract
We say operators A, B on Hilbert space satisfy Fuglede-Putnam theorem if AX
 Keywords
p-hyponormal operator;class y;Fuglede-Putnam theorem;
 Language
English
 Cited by
1.
Fuglede–Putnam type theorems via the Aluthge transform, Positivity, 2013, 17, 1, 151  crossref(new windwow)
2.
On Fuglede–Putnam properties, Positivity, 2015, 19, 4, 911  crossref(new windwow)
 References
1.
A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), no. 3, 307-315 crossref(new window)

2.
R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415

3.
B. P. Duggal, Quasi-similar p-hyponormal operators, Integral Equations Operator Theory 26 (1996), no. 3, 338-345 crossref(new window)

4.
B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 35-40

5.
I. H. Jeon, K. Tanahashi, and A. Uchiyama, On Quasisimilarity for log-hyponormal operators, Glasg. Math. J. 46 (2004), no. 1, 169-176 crossref(new window)

6.
S. M. Patel, On Intertwining p-hyponormal operators, Indian J. Math. 38 (1996), no. 3, 287-290

7.
C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357-362 crossref(new window)

8.
C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag, Berlin-Heidelberg-New York, 1967

9.
C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33-36 crossref(new window)

10.
J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), no. 4, 359-365 crossref(new window)

11.
J. G. Stampfli and B. L. Wadhwa, On dominant operators, Monatsh. Math. 84 (1977), no. 2, 143-153 crossref(new window)

12.
K. Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math. (Szeged) 43 (1981), no. 1-2, 123-125

13.
A. Uchiyama and K. Tanahashi, Fuglede-Putnams theorem for p-hyponormal or log-hyponormal operators, Glasg. Math. J. 44 (2002), no. 3, 397-410 crossref(new window)

14.
A. Uchiyama, Berger-Shaws theorem for p-hyponormal operators, Integral Equations Operator Theory 33 (1999), no. 2, 221-230 crossref(new window)

15.
A. Uchiyama and T. Yoshino, On the class y operators, Nihonkai Math. J. 8 (1997), 179-194

16.
B. L. Wadhwa, M-hyponormal operators, Duke Math. J. 41 (1974), 655-660 crossref(new window)

17.
T. Yoshino, Remark on the generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc. 95 (1985), no. 4, 571-572