JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE PROJECTIVE FOURFOLDS WITH ALMOST NUMERICALLY POSITIVE CANONICAL DIVISORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE PROJECTIVE FOURFOLDS WITH ALMOST NUMERICALLY POSITIVE CANONICAL DIVISORS
Fukuda, Shigetaka;
  PDF(new window)
 Abstract
Let X be a four-dimensional projective variety defined over the field of complex numbers with only terminal singularities. We prove that if the intersection number of the canonical divisor K with every very general curve is positive (K is almost numerically positive) then every very general proper subvariety of X is of general type in `;he viewpoint of geometric Kodaira dimension. We note that the converse does not hold for simple abelian varieties.
 Keywords
almost numerically positive;of general type;Kodaira dimension;
 Language
English
 Cited by
1.
Algebraic Fiber Space Whose Generic Fiber and Base Space Are of Almost General Type,;

Kyungpook mathematical journal, 2014. vol.54. 2, pp.203-209 crossref(new window)
1.
Algebraic Fiber Space Whose Generic Fiber and Base Space Are of Almost General Type, Kyungpook mathematical journal, 2014, 54, 2, 203  crossref(new windwow)
 References
1.
F. Ambro, Nef dimension of minimal models, Math. Ann. 330 (2004), no. 2, 309-322

2.
T. Fujita, Fractionally logarithmic canonical rings of algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 685-696

3.
Y. Kawamata, On the classification of noncomplete algebraic surfaces, Lecture Notes in Math. 732 (1979), 215-232 crossref(new window)

4.
Y. Kawamata, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), no. 2, 229-246 crossref(new window)

5.
Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math. 10 (1987), 283-360

6.
S. Keel, K. Matsuki, and J. McKernan, Log abundance theorem for threefolds, Duke Math. J. 75 (1994), no. 1, 99-119 crossref(new window)

7.
S. Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987

8.
Y. Miyaoka, On the Kodaira dimension of minimal threefolds. Math. Ann. 281 (1988), no. 2, 325-332 crossref(new window)

9.
Y. Miyaoka and S. Mori, A numerical criterion for uniruledness, Ann. of Math. (2) 124 (1986), no. 1, 65-69 crossref(new window)

10.
S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117-253 crossref(new window)

11.
S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus 11, Lecture Notes in Math. 1016 (1983), 334-353 crossref(new window)

12.
V. V. Shokurov, Three-dimensional log perestroikas, Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95-202 crossref(new window)

13.
V. V. Shokurov, Prelimiting flips, Proc. Steklov Inst. Math. 240 (2003), 75-213

14.
Y.-T. Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex Geometry (ed. I. Bauer), Springer-Verlag, Berlin, 2002, pp. 223-277

15.
H. Tsuji, Deformation invariance of plurigenera, Nagoya Math. J. 166 (2002), 117-134

16.
K. Ueno, Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Math. 439 (1975), 1-278 crossref(new window)