JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ITERATIVE ALGORITHMS WITH ERRORS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ITERATIVE ALGORITHMS WITH ERRORS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES
Jung, Jong-Soo;
  PDF(new window)
 Abstract
The iterative algorithms with errors for nonexpansive mappings are investigated in Banach spaces. Strong convergence theorems for these algorithms are obtained. Our results improve the corresponding results in [5, 13-15, 23, 27-29, 32] as well as those in [1, 16, 19, 26] in framework of a Hilbert space.
 Keywords
iterative algorithm;nonexpansive mapping;fixed point;sunny and nonexpansive retraction;uniformly convex;uniformly Gateaux differentiable norm;
 Language
English
 Cited by
 References
1.
H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996), no. 1, 150-159 crossref(new window)

2.
F. E. Browder, Convergence of approximations to fixed points of nonexpansive non-linear mappings in Banach spaces, Archs Ration. Mech. Anal. 24 (1967), 82-90

3.
F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225 crossref(new window)

4.
R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. 38 (1981), no. 4, 304-314 crossref(new window)

5.
Y. J. Cho, S. M. Kang, and H. Y. Zhou, Some control condition on iterative methods, Commun. Applied Nonlinear Anal. 12 (2005), no. 2, 27-34

6.
M. M. Day, Reflexive Banach space not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313-317 crossref(new window)

7.
J. Diestel, Geometry of Banach Spaces, Lectures Notes in Math. 485, Springer-Verlag, Berlin, Heidelberg, 1975

8.
F. Deutsch and I. Yamada, Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Ana. Optim. 19 (1998), no. 1-2, 33-56 crossref(new window)

9.
K. Goebel and W. A. Kirk, Topics in metric fixed point theory, in 'Cambridge Studies in Advanced Mathematics,' Vol. 28, Cambridge Univ. Press, Cambridge, UK, 1990

10.
K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984

11.
K. S. Ha and J. S. Jung, Strong convergence theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 147 (1990), no. 2, 330-339 crossref(new window)

12.
B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957-961 crossref(new window)

13.
J. S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005), no. 2, 509-520 crossref(new window)

14.
J. S. Jung, Y. J. Cho, and R. P. Agarwal, Iterative schemes with some control conditions for a family of finite nonexpansive mappings in Banach space, Fixed Point Theory Appl. 2005 (2005), no. 2, 125-135 crossref(new window)

15.
J. S. Jung and T. H. Kim, Convergence of approximate sequences for compositions of nonexpansive mappings in Banach spaces, Bull. Korean Math. Soc. 34 (1997), no. 1, 93-102

16.
P. L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Ser A-B, Paris 284 (1977), no. 21, 1357-1359

17.
L. S. Liu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), no. 1, 114-125 crossref(new window)

18.
C. H. Morales and J. S. Jung, Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3411-3419

19.
J. G. OHara, P. Oillay, and H. K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 54 (2003), no. 8, 1417-1426 crossref(new window)

20.
S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292 crossref(new window)

21.
S. Reich, Approximating fixed points of nonexpansive mappings, Panamer. Math. J. 4 (1994), no. 2, 23-28

22.
T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), no. 1, 71-83 crossref(new window)