JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMMUTATOR LENGTH OF SOLVABLE GROUPS SATISFYING MAX-N
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMMUTATOR LENGTH OF SOLVABLE GROUPS SATISFYING MAX-N
Mehri, Akhavan-Malayeri;
  PDF(new window)
 Abstract
In this paper we find a suitable bound for the number of commutators which is required to express every element of the derived group of a solvable group satisfying the maximal condition for normal subgroups. The precise formulas for expressing every element of the derived group to the minimal number of commutators are given.
 Keywords
solvable group;max-n;
 Language
English
 Cited by
1.
On Solvable Groups of Arbitrary Derived Length and Small Commutator Length, International Journal of Mathematics and Mathematical Sciences, 2011, 2011, 1  crossref(new windwow)
2.
Palindromic Width of Finitely Generated Solvable Groups, Communications in Algebra, 2015, 43, 11, 4809  crossref(new windwow)
3.
Palindromic width of wreath products, Journal of Algebra, 2017, 471, 1  crossref(new windwow)
 References
1.
M. Akhavan-Malayeri, On commutator length of certain classes of solvable groups, Internat. J. Algebra Comput. 15 (2005), no. 1, 143-147 crossref(new window)

2.
M. Akhavan-Malayeri, Commutator length and square length of the wreath product of a free group by the infinite cyclic group, Houston J. Math. 27 (2001), no. 4, 753-756

3.
M. Akhavan-Malayeri and A, Rhemtulla, Commutator length of abelian-by-nilpotent groups, Glasg. Math. J. 40 (1998), no. 1, 117-121 crossref(new window)

4.
Kh. S. Allambergenov and V.A. Romankov, Products of commutators in groups, Dokl. Akad. Nauk. UzSSR. (1984), no. 4, 14-15(Russian)

5.
C. Bavard and G. Meigniez, Commutateurs dans les groupes metabeliens, Indag. Mathem. (N.S.) 3 (1992), no. 2, 129-135 crossref(new window)

6.
B. Hartley, Subgroup of finite index in profinite groups, Math. Z. 168 (1979), no. 1, 71-76 crossref(new window)

7.
A. Rhemtulla, Commutators of certain finitely generated soluble groups, Canad. J. Math. 21 (1969), 1160-1164 crossref(new window)

8.
D. Segal, Closed subgroups of profinite groups, Proc. London Math. Soc. (3) 81 (2000), no. 1, 29-54

9.
P. Stroud, Ph. D. Thesis, Cambridge, 19