JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DEGENERATE PRINCIPAL SERIES FOR EXCEPTIONAL p-ADIC GROUPS OF TYPE G2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DEGENERATE PRINCIPAL SERIES FOR EXCEPTIONAL p-ADIC GROUPS OF TYPE G2
Choi, Seun-Gil;
  PDF(new window)
 Abstract
We determine reducibility points of degenerate principal series for exceptional p-adic groups of type via Jacquet module techniques and Hecke algebra isomorphisms
 Keywords
degenerate principal series;exceptional p-adic groups of type ;
 Language
English
 Cited by
 References
1.
D. Ban and C. Jantzen, Degenerate Principal Series for even-orthogonal groups, Represent. Theory 7 (2003), 440–480 crossref(new window)

2.
D. Barbasch, Reducibility of some spherical induced modules for $F_{4}$ (Note)

3.
I. Bernstein and A. Zelevinsky, Induced representations of reductive p-adic groups. I., Ann. Sci. Ecole Norm. Sup. (4) 10 (1997), no. 4, 441–472

4.
C. Bushnell and P. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582-634

5.
H. Jacquet, Representation des groupes lineaires p-adiques, Theory of group representations and Fourier Analysis, C. I. M. E. (1971), 119–220

6.
C. Jantzen, Degenerate principal series for orthogonal groups, J. Reine Angew. Math. 441 (1993), 61–98

7.
C. Jantzen, Degenerate principal series for symplectic groups, Mem. Amer. Math. Soc. 102 (1993), no. 488

8.
C. Jantzen,, Degenerate principal series for symplectic and odd-orthogonal groups, Mem. Amer. Math. Soc. 124 (1996), no. 590

9.
C. Jantzen and H. Kim, Parametrization of the image of normalized intertwining operators, Pacific J. Math. 199 (2001), no. 2, 367–415

10.
G. Muic, The unitary dual of p-adic $G_{2}$, Duke Math. J. 90 (1997), no. 3, 465–493 crossref(new window)

11.
A. Moy, Minimal K-types for $G_{2}$ over a p-adic field, Trans. Amer. Math. Soc. 305 (1988), no. 2, 517–529 crossref(new window)

12.
A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Ecole Norm. Sup. (4) 31 (1998), no. 3, 361–413

13.
M. Tadic, Notes on representations of non-archimedian SL(n), Pacific J. Math. 152 (1992), no. 2, 375–396 crossref(new window)

14.
M. Tadic, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91

15.
A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), no. 2, 165–210