1.
D. Ban and C. Jantzen, Degenerate Principal Series for even-orthogonal groups, Represent. Theory 7 (2003), 440–480
2.
D. Barbasch, Reducibility of some spherical induced modules for $F_{4}$ (Note)
3.
I. Bernstein and A. Zelevinsky, Induced representations of reductive p-adic groups. I., Ann. Sci. Ecole Norm. Sup. (4) 10 (1997), no. 4, 441–472
4.
C. Bushnell and P. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582-634
5.
H. Jacquet, Representation des groupes lineaires p-adiques, Theory of group representations and Fourier Analysis, C. I. M. E. (1971), 119–220
6.
C. Jantzen, Degenerate principal series for orthogonal groups, J. Reine Angew. Math. 441 (1993), 61–98
7.
C. Jantzen, Degenerate principal series for symplectic groups, Mem. Amer. Math. Soc. 102 (1993), no. 488
8.
C. Jantzen,, Degenerate principal series for symplectic and odd-orthogonal groups, Mem. Amer. Math. Soc. 124 (1996), no. 590
9.
C. Jantzen and H. Kim, Parametrization of the image of normalized intertwining operators, Pacific J. Math. 199 (2001), no. 2, 367–415
10.
G. Muic, The unitary dual of p-adic
$G_{2}$, Duke Math. J. 90 (1997), no. 3, 465–493
11.
A. Moy, Minimal K-types for
$G_{2}$ over a p-adic field, Trans. Amer. Math. Soc. 305 (1988), no. 2, 517–529
12.
A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. Ecole Norm. Sup. (4) 31 (1998), no. 3, 361–413
13.
M. Tadic, Notes on representations of non-archimedian SL(n), Pacific J. Math. 152 (1992), no. 2, 375–396
14.
M. Tadic, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91
15.
A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), no. 2, 165–210