JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A LOWER BOUND FOR AREA OF COMPACT SINGULAR SURFACES OF NONPOSITIVE CURVATURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A LOWER BOUND FOR AREA OF COMPACT SINGULAR SURFACES OF NONPOSITIVE CURVATURE
Chai, Young-Do; Lee, Doo-Hann;
  PDF(new window)
 Abstract
In this paper, we obtain some lower bounds for area of non-simply connected compact singular surfaces of nonpositive curvature. One inequality involves systole and area of the surface.
 Keywords
surface area;systole;
 Language
English
 Cited by
1.
A NOTE ON SURFACES IN THE NORMAL BUNDLE OF A CURVE,;;

충청수학회지, 2014. vol.27. 2, pp.211-218 crossref(new window)
1.
A NOTE ON SURFACES IN THE NORMAL BUNDLE OF A CURVE, Journal of the Chungcheong Mathematical Society, 2014, 27, 2, 211  crossref(new windwow)
 References
1.
A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications, Tr. Mat. Inst. Akad. Nauk SSSR 38 (1951), 5-23

2.
C. Bavard, Inegalite isosystolique pour la bouteille de Klein, Math. Ann. 274 (1986), no. 3, 439-441 crossref(new window)

3.
Y. D. Burago and V. A. Zalgaller, Geometric inequalities, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 110 (1981), 235-236

4.
S. Buyalo, Lectures on space of curvature bounded from above III, spring semester 1994/95 a.y. University of Illinois at Urbana Champaign.

5.
M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1-147

6.
J. J. Hebda, Some lower bounds for the area of surfaces, Invent. Math. 65 (1981/82), no. 3, 485-490 crossref(new window)

7.
K. Nagano, A volume convergence theorem for Alexandrov spaces with curvature bounded above, Math. Z. 241 (2002), no. 1, 127-163 crossref(new window)

8.
P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952), 55-71 crossref(new window)