JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE (A) IN A NONFLAT COMPLEX SPACE FORM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE (A) IN A NONFLAT COMPLEX SPACE FORM
Ki, U-Hang; Liu, Hui-Li;
  PDF(new window)
 Abstract
In this paper, we prove that if the structure Jacobi operator commutes with the Ricci tensor S, then a real hypersurface with non-negative scalar curvature of a nonflat complex space form is a Hopf hypersurface. Further, we characterize such Hopf hypersurface in .
 Keywords
real hypersurface;structure Jacobi operator;Ricci tensor;Hopf hypersurface;
 Language
English
 Cited by
1.
Real Hypersurfaces in <i>CP<sup>2</sup></i> and <i>CH<sup>2</sup></i> Equipped With Structure Jacobi Operator Satisfying L<sub>ξ</sub>l =▽<sub>ξ</sub>l, Advances in Pure Mathematics, 2012, 02, 01, 1  crossref(new windwow)
 References
1.
J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141

2.
T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), no. 2, 481-499 crossref(new window)

3.
J. T. Cho and U-H Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), no. 1-2, 155-167 crossref(new window)

4.
J. T. Cho and U-H Ki, Real hypersurfaces in a complex space form with the symmetric Reeb flow, preprint

5.
U-H. Ki, J. D. Perez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex space forms with $\xi$-parallel Ricci tensor and structure Jacobi operator, J. Korean Math. Soc. 44 (2007), no. 2, 307-326 crossref(new window)

6.
U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221

7.
M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), no. 1, 137-149 crossref(new window)

8.
S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), no. 2, 245-261 crossref(new window)

9.
R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms. (English summary) Tight and taut submanifolds (Berkeley, CA, 1994), 233-305, Math. Sci. Res. Inst. Publ., 32, Cambridge Univ. Press, Cambridge, 1997

10.
M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364 crossref(new window)

11.
M. Ortega, J. D. Perez, and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, to appear in Rocky Mountain J. Math

12.
J. D. Perez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\xi$-parallel, Diff. Geom. and its Appl. 22 (2005), no. 2, 181-188 crossref(new window)

13.
R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506